-
[
Chembiochem,
2003]
I never expected to spend most of my life studying worms. However, when the time came for me to choose an area for my postdoctoral research, I was intrigued both with the problems of neurobiology and with the approaches of genetics. Having heard that a new "genetic organism" with a remarkably simple nervous system was being explored by Sydney Brenner - the microscopic soil nematode Caenorhabditis elegans - I decided to join Sydney in his efforts.
-
[
Nat Genet,
2003]
In the year that the Nobel Prize was awarded to Sydney Brenner, Bob Horvitz and Sir John Suslton, the 14th International C. elegans meeting was bound to be a celebration as well as a scientific meeting and social get-together. The celebratory mood reached its high point during the keynote address by Sydney Brenner, the 'Father of the Worm'. The address was classic Brenner, at once provocative and Delphic, with incisive analogies, witty anecdotes and sweeping dismissals (systems biology did not fare well), all delivered with his usual flair.
-
[
J Neurogenet
]
During the 1961-1971 decade, Sydney Brenner made several significant contributions to molecular biology-showing that the genetic code is a triplet code; discovery of messenger RNA; colinearity of gene and protein; decoding of chain terminating codons; and then an important transition: the development of the nematode <i>Caenorhabditis elegans</i> into the model eucaryote genetic system that has permeated the whole of recent biology.
-
[
Am J Hum Genet,
1998]
Since Sydney Brenner wrote this statement in a visionary research proposal addressed to Max Perutz 35 years ago, an enormous amount of information has been gathered on the biology of the nematode Caenorhabditis elegans ("the worm"), both fulfilling his predictions and exceeding his original expectations. Researchers have identified every cell in the worm and have described all the lineages by which these cells are formed...
-
[
J Neurogenet
]
A slide taped to a window at the Woods Hole Marine Biology Laboratory was my first introduction to the touch receptor neurons of the nematode <i>Caenorhabditis elegans</i>. Studying these cells as a postdoc with Sydney Brenner gave me a chance to work with John Sulston on a fascinating set of neurons. I would never have guessed then that 43 years later I would still be excited about learning their secrets.
-
[
Nat Rev Genet,
2002]
The nematode Caenorhabditis elegans was chosen as a model genetic organism because its attributes, chiefly its hermaphroditic lifestyle and rapid generation time, make it suitable for the isolation and characterization of genetic mutants. The most important challenge for the geneticist is to design a genetic screen that will identify mutations that specifically disrupt the biological process of interest. Since 1974, when Sydney Brenner published his pioneering genetic screen, researchers have developed increasingly powerful methods for identifying genes and genetic pathways in C. elegans.
-
[
Cell,
2002]
In 1963, Sydney Brenner, one of the founders of molecular biology, had reached an intellectual impasse. He felt that there were few advances left in that field that would have the significance of the discovery of mRNA and the elucidation of the genetic code, both of which he had participated in, and in any case with so many Americans joining in, the chemical details of replication and so forth would all be worked out soon. Brenner thought large thoughts, and the questions that were left seemed too
-
[
Science,
1999]
Elizabeth Pennisi, in her excellent commentary "Worming secrets from the C. elegans" (News Focus, 11 Dec 1998, p.1972), states that "The first person to sense that the worm might take on such a prominent role in biology was molecular biologist Sydney Brenner." I am sure that Brenner would wish to acknowledge the role that Ellsworth C. Dougherty played in this matter. Dougherty originally described in 1949, "[a] new species of the free-living nematode genus Rhabditis of interest in comparative physiology and genetics".
-
[
Science,
1994]
In 1967, Sydney Brenner isolated the first behavioral mutants of the nematode Caenorhabditis elegans, and in 1970, John White began the systematic reconstruction of its nervous system. This dual approach of genetics coupled with detailed morphological analysis, now enhanced by the tools of molecular biology and electrophysiology, still dominates the study of the function and development of the C. elegans nervous system. Although Brenner's vision of a comprehensive understanding of this simple animal has taken time to mature, findings of the past few years indicate that the tree is bearing fruit.
-
[
Lancet,
2002]
The overwhelming complexity of higher organisms can make it hard to know where to begin to understand them. The three scientists who share this year's Nobel prize for physiology or medicine, Sydney Brenner (Salk Institute, La Jolla, CA, USA), John Sulston (Wellcome Trust Sanger Institute, Hinxton, UK), and Robert Horvitz (Massachusetts Institute of Technology, Boston, MA, USA), all chose to study a far simpler organisms - the nematode worm Caenorhabditis elegans. Although multicellular, this organism reproduces rapidly and is transparent, so that each developmental stage can be seen clearly without the need for dissection.