-
[
Environ Int,
2017]
BACKGROUND: The objective of this evaluation is to understand the human health impacts of mountaintop removal (MTR) mining, the major method of coal mining in and around Central Appalachia. MTR mining impacts the air, water, and soil and raises concerns about potential adverse health effects in neighboring communities; exposures associated with MTR mining include particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), metals, hydrogen sulfide, and other recognized harmful substances. METHODS: A systematic review was conducted of published studies of MTR mining and community health, occupational studies of MTR mining, and any available animal and in vitro experimental studies investigating the effects of exposures to MTR-mining-related chemical mixtures. Six databases (Embase, PsycINFO, PubMed, Scopus, Toxline, and Web of Science) were searched with customized terms, and no restrictions on publication year or language, through October 27, 2016. The eligibility criteria included all human population studies and animal models of human health, direct and indirect measures of MTR-mining exposure, any health-related effect or change in physiological response, and any study design type. Risk of bias was assessed for observational and experimental studies using an approach developed by the National Toxicology Program (NTP) Office of Health Assessment and Translation (OHAT). To provide context for these health effects, a summary of the exposure literature is included that focuses on describing findings for outdoor air, indoor air, and drinking water. RESULTS: From a literature search capturing 3088 studies, 33 human studies (29 community, four occupational), four experimental studies (two in rat, one in vitro and in mice, one in C. elegans), and 58 MTR mining exposure studies were identified. A number of health findings were reported in observational human studies, including cardiopulmonary effects, mortality, and birth defects. However, concerns for risk of bias were identified, especially with respect to exposure characterization, accounting for confounding variables (such as socioeconomic status), and methods used to assess health outcomes. Typically, exposure was assessed by proximity of residence or hospital to coal mining or production level at the county level. In addition, assessing the consistency of findings was challenging because separate publications likely included overlapping case and comparison groups. For example, 11 studies of mortality were conducted with most reporting higher rates associated with coal mining, but many of these relied on the same national datasets and were unable to consider individual-level contributors to mortality such as poor socioeconomic status or smoking. Two studies of adult rats reported impaired microvascular and cardiac mitochondrial function after intratracheal exposure to PM from MTR-mining sites. Exposures associated with MTR mining included reports of PM levels that sometimes exceeded Environmental Protection Agency (EPA) standards; higher levels of dust, trace metals, hydrogen sulfide gas; and a report of increased public drinking water violations. DISCUSSION: This systematic review could not reach conclusions on community health effects of MTR mining because of the strong potential for bias in the current body of human literature. Improved characterization of exposures by future community health studies and further study of the effects of MTR mining chemical mixtures in experimental models will be critical to determining health risks of MTR mining to communities. Without such work, uncertainty will remain regarding the impact of these practices on the health of the people who breathe the air and drink the water affected by MTR mining.
-
[
FEBS Lett,
2023]
Due to their essential functions, dysregulation of nuclear pore complexes (NPCs) is strongly associated with numerous human diseases, including neurodegeneration and cancer[1]. On a cellular level, longevity of scaffold nucleoporins in post-mitotic cells of both C. elegans and mammals renders them vulnerable to age-related damage, which is associated with an increase in pore leakiness and accumulation of intranuclear aggregates in rat brain cells[2-4]. Thus, understanding the mechanisms which underpin the homeostasis of this complex, as well as other nuclear proteins, is essential. In this review, autophagy-mediated degradation pathways governing nuclear components in yeast will be discussed, with a particular focus on NPCs. Furthermore, the various nuclear degradation mechanisms identified thus far in diverse eukaryotes will also be highlighted. This article is protected by copyright. All rights reserved.
-
[
Crit Rev Biochem Mol Biol,
2012]
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Marino-Ramirez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Hakkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
-
[
1983]
In 1974, Sydney Brenner published an elegant paper that described the genetic system of Caenorhabditis elegans and led to its use in research on a wide variety of topics, including aging (Brenner, 1974). Its small size (1mm as an adult) and determinate cell lineage has allowed a description of the entire somatic cell lineage from the one-cell stage to the adult (Sulston and Horvitz, 1977; Deppe et al., 1978; Kimble and Hirsh, 1979; Suslton et al., personal communication). Its ease of culture makes it an organism of choice for studies of various aspects of anatomy and physiology, including muscle formation and function (Zengel and Epstein, 1980; Mackenzie and Epstein, 1980), cuticle formation (Cox et al, 1981), neuroanatomy (Ward et al, 1975; Ware et al, 1975; Sulston et al, 1975), and behavior (Dusenbery, 1980). Several genes have been cloned by recombinant DNA techniques ablation (Kimble, 1981; Laufer and von Ehrenstin, 1981) procedures, as well as most of the modern molecular techniques, are in use.
-
[
Cell,
1997]
The demonstrations in two papers in this issue of Cell (Rocheleau et al., 1997; Thorpe et al., 1997) of the involvement of a Wnt pathway in very early embryogenesis in Caenorhabditis elegans provides another significant step toward the ambitious but realistic goal of understanding all the basic strategies used to control embryogenesis in this model organism. At the same time, they challenge some of the prevailing models of Wnt signaling, suggesting that interactions among Wnt pathway components may vary in different developmental processes. With these papers, as well as the earlier reports on Wnt pathway genes
lin-44,
lin-17, and
pop-1 (Herman et al., 1995; Lin et al., 1995; Harris et al., 1996; Sawa et al., 1996) and new studies on Wnt pahtway genes reported in recent meetings, worm breeders have become a significant force in the army of Wnt researchers. They have also illustrated how different systems can provide important new complementary insights.
-
[
Front Cell Dev Biol,
2020]
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The <i>C. elegans</i> germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in <i>C. elegans</i> uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the <i>C. elegans</i> model system are likely relevant for other organisms.
-
[
Cell,
2004]
Heterotrimeric G proteins are well known for their function in signal transduction downstream of seven transmembrane receptors. More recently, however, genetic analysis in C. elegans and in Drosophila has revealed a second, essential function of these molecules in positioning the mitotic spindle and attaching microtubules to the cell cortex. Five new publications in Cell (Afshar et al., 2004; Du and Macara, 2004 [this issue of Cell]; Hess et al., 2004), Developmental Cell (Martin-McCaffrey et al., 2004), and Current Biology (Couwenbergs et al., 2004) show that this function is conserved in vertebrates and-like the classical pathway- involves cycling of G proteins between GDP and GTP bound conformations.
-
[
Methods Cell Biol,
2012]
This chapter is dedicated to the study of aging in Caenorhabditis elegans (C. elegans). The assays are divided into two sections. In the first section, we describe detailed protocols for performing life span analysis in solid and liquid medium. In the second section, we describe various assays for measuring age-related changes. Our laboratory has been involved in several fruitful collaborations with non-C. elegans researchers keen on testing a role for their favorite gene in modulating aging (Carrano et al., 2009; Dong et al., 2007; Raices et al., 2008; Wolff et al., 2006). But even with the guidance of trained worm biologists, this undertaking can be daunting. We hope that this chapter will serve as a worthy compendium for those researchers who may or may not have immediate access to laboratories studying C. elegans.
-
[
1982]
The small soil nematode Caenorhabditis elegans is an attractive organism for the molecular study of muscle function and development because of its anatomical simplicity and suitability for genetic and biochemical analysis (Brenner 1974; Sulston and Horvitz 1977). The body-wall musculature of C. elegans is composed of 95 cell disposed in four quadrants, which run the length of the animal beneath the cuticle. The musculature is obliquely striated, and the sarcomeres are oriented parallel to the long axis of the animal. Since these cells represent a large reaction of the animal mass, isolation of contractile proteins is comparatively simple (Epstein et al. 1974; Waterston et al. 1974, 1977a; Harris and Epstein 1977; Mackenzie and Epstein 1980). Mutants affecting the characteristic pattern of motility of C. elegans can be easily identified, and microscopic examination of these "uncoordinated," or unc strains, in the living animal by polarized light microscopy or, more carefully, by electron microscopy has led to the identification of 22 genes that produce altered muscle phenotypes (Waterston et al. 1980; Zengel and Epstein 1980). Of these, two are known to code for major structural proteins of muscle: The
unc-54 gene codes for the major heavy chain of myosin (Epstein et al. 1974; MacLeod et al. 1977b), whereas the un-15 gene codes for paramyosin, the core protein of the thick filaments (Waterston et al. 1974; MacLeod et al. 1977a; Harris and Epstein 1977).
-
[
Adv Exp Med Biol,
1988]
Parasite-specific putrescine-N-acetyltransferase and polyamine oxidase, both involved in the reversed pathway of polyamine metabolism, were demonstrated for Ascaris suum and Onchocerca volvulus. Berenil-treatment was found to be correlated with accumulation of polyamines, especially spermine, obviously due to blockaded polyamine interconversion. Furthermore it was shown that added spermine to the culture medium led to the death of worms. These specificities might be exploited for chemotherapy of filarial infections. Polyamines are widely distributed in the nature. They are found in higher and lower eucaryotes and in procaryotes as well as in viruses (Tabor and Tabor, 1984). During the last years there have been many approaches to examine the role of polyamines in cell growth and differentiation in vertebrates (Tabor and Tabor, 1984; Pegg, 1986). The polyamine metabolism of parasites also has attracted increasing interest, e.g. in African trypanosomes the initial enzyme of polyamine synthesis - ornithine decarboxylase - has been exploited as a target for chemotherapy by using DFMO (DL alpha-difluoromethylornithine) (Bacchi et al., 1980; Bacchi et al., 1983; Fairlamb et al., 1985; Giffin et al., 1986). The polyamine metabolism of filaria and other helminths is still a neglected area of research, although there are reports about distribution pattern of polyamines and some peculiarities of polyamine metabolism in filarial worms (Srivastava et al., 1980; Wittich et al., 1987; Walter, 1988). DFMO and MGBG (methylglyoxal bis-(guanylhydrazone], both of which are potent inhibitors of polyamine synthesis in mammals, do not significantly effect the viability of filarial worms (Wittich et al., 1987).(ABSTRACT TRUNCATED AT 250 WORDS)