-
[
Nucleic Acids Res,
2010]
The design of RNA interference (RNAi) reagents is an essential step for performing loss-of-function studies in many experimental systems. The availability of sequenced and annotated genomes greatly facilitates RNAi experiments in an increasing number of organisms that were previously not genetically tractable. The E-RNAi web-service, accessible at
http://www.e-rnai.org/, provides a computational resource for the optimized design and evaluation of RNAi reagents. The 2010 update of E-RNAi now covers 12 genomes, including Drosophila, Caenorhabditis elegans, human, emerging model organisms such as Schmidtea mediterranea and Acyrthosiphon pisum, as well as the medically relevant vectors Anopheles gambiae and Aedes aegypti. The web service calculates RNAi reagents based on the input of target sequences, sequence identifiers or by visual selection of target regions through a genome browser interface. It identifies optimized RNAi target-sites by ranking sequences according to their predicted specificity, efficiency and complexity. E-RNAi also facilitates the design of secondary RNAi reagents for validation experiments, evaluation of pooled siRNA reagents and batch design. Results are presented online, as a downloadable HTML report and as tab-delimited files.
-
[
Biochemistry,
2012]
Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.
-
[
J Infect Dis,
2015]
BACKGROUND: Elimination of onchocerciasis and lymphatic filariasis is targeted for 2020. Given the coincident Loa loa infections in Central Africa and the potential for drug resistance development, the need for new microfilaricides and macrofilaricides has never been greater. With the genomes of L. loa, Onchocerca volvulus, Wuchereria bancrofti, and Brugia malayi available, new drug targets have been identified. METHODS: The effects of the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib on B. malayi adult males, adult females, L3 larvae, and microfilariae were assessed using a wide dose range (0-100 M) in vitro. RESULTS: For microfilariae, median inhibitory concentrations (IC50 values) on day 6 were 6.06 M for imatinib, 3.72 M for dasatinib, and 81.35 M for nilotinib; for L3 larvae, 11.27 M, 13.64 M, and 70.98 M, respectively; for adult males, 41.6 M, 3.87 M, and 68.22 M, respectively; and for adult females, 42.89 M, 9.8 M, and >100 M, respectively. Three-dimensional modeling suggests how these tyrosine kinase inhibitors bind and inhibit filarial protein activity. CONCLUSIONS: Given the safety of imatinib in humans, plans are underway for pilot clinical trials to assess its efficacy in patients with filarial infections.
-
[
Science,
2002]
Wnt pathways are involved in the control of gene expression, cell behavior, cell adhesion, and cell polarity. In addition, they often operate in combination with other signaling pathways. The Wnt/beta-catenin pathway is the best studied of the Wnt pathways and is highly conserved through evolution. In this pathway, Wnt signaling inhibits the degradation of beta-catenin, which can regulate transcription of a number of genes. Some of the genes regulated are those associated with cancer and other diseases (for example, colorectal cancer and melanomas). As a result, components of the Wnt/beta-catenin pathway are promising targets in the search for therapeutic agents. Information about Wnt pathways is available both in canonical terms and at the species level. In addition to the canonical Wnt/beta-catenin pathway, information is now available for Drosophila, Caenorhabditis elegans, and Xenopus. The STKE Connections Maps for these pathways provide an important tool in accessing this large body of complex information.
-
[
Cell,
2006]
Wnt signaling pathways are important for multiple biological processes during development and disease. Wnt proteins are secreted factors that activate target-gene expression in both a short- and long-range manner. Currently, little is known about how Wnts are released from cells and which factors facilitate their secretion. Here, we identify a conserved multipass transmembrane protein, Evenness interrupted (Evi/Wls), through an RNAi survey for transmembrane proteins involved in Drosophila Wingless (Wg) signaling. During development, evi mutants have patterning defects that phenocopy wg loss-of-function alleles and fail to express Wg target genes. evi's function is evolutionarily conserved as depletion of its human homolog disrupts Wnt signaling in human cells. Epistasis experiments and clonal analysis place evi in the Wg-producing cell. Our results show that Wg is retained by evi mutant cells and suggest that evi is the founding member of a gene family specifically required for Wg/Wnt secretion.
-
[
Nucleic Acids Res,
2007]
RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at
http://rnai.dkfz.de. -
[
Worm Breeder's Gazette,
1976]
We have studied maternal effects in 23 zyg ts mutants to estimate the times of expression of genes whose products are required in embryogenesis. We have used the following three tests, called arbitrarily A, B, and C. A test: Heterozygous (m/+) L4's are shifted to 25 C and allowed to self-fertilize. If 100% of their eggs yield larvae (25% of which express the mutant phenotype as adults), then the mutant is scored as maternal (M). If 25% of the F1 eggs fail to hatch, then the mutant is scored as non-maternal (N). An M result indicates that expression of the + allele in the parent allows m/m zygotes to hatch and grow to adulthood. A result of N indicates the opposite: that the + allele must be expressed in the zygote for hatching to occur. Out of 23 zyg mutants tested, 3 were scored N and 20 were scored M in the A test. Therefore, for most of the genes defined by these mutants, expression in the parent is sufficient for zygote survival, even if the gene is not expressed in the zygote. B test: Homozygous (m/m) hermaphrodites reared at 25 C are mated with N2 (+/+) males. If eggs fail to hatch at 25 C, but mated hermaphrodites shifted to 16 C produce cross progeny to give proof of mating, then the mutant is scored M. If cross progeny appear in the 25 C mating, then the mutant is scored N. An M result indicates that expression of the + allele in the zygote is not sufficient to allow m/+ progeny of an m/m hermaphrodite to survive. Conversely an N result indicates either that zygotic expression of the + allele is sufficient for survival, or that a sperm function or factor needed for early embryogenesis can be supplied paternally (see C test below). Out of the 23 zyg mutants tested, 11 were scored M and 12 were scored N. The combined results of A and B tests and their simplest interpretation are as follows. Ten mutants are M,M; the genes defined by these mutants must be expressed in the hermaphrodite parent for the zygote to survive. Ten mutants are M,N; these genes can be expressed either in the parent or in the zygote. Two mutants are N,N; these genes must be expressed in the zygote. One mutant is N,M; this gene must be expressed both in the maternal parent and in the zygote. C test: Homozygous (m/m) hermaphrodites reared at 25 C are mated with heterozygous (m/+) males. If rescue by a +/+ male in the B test depends on the + allele, then only half the cross progeny zygotes of a C test mating (m/+ male x m/m hermaphrodite) should survive. However, if rescue depends on a function or cytoplasmic component from the male sperm, then all the cross progeny zygotes in a C test should survive. Of the 10 M,N mutants, 6 have been C tested; one exhibited paternal rescue independent of the + allele. The A and B tests also were carried out on 16 mutants that arrest before the L3 molt (acc mutants). In the A test on 2 of these mutants, all m/m progeny of m/+ parents grew to adulthood at 25 C. Therefore, parental contributions are sufficient to overcome a progeny mutational block as late as the L2 stage. All 16 acc mutants scored N in the B test.
-
[
Worm Breeder's Gazette,
1994]
cej-1 Encodes a Novel Protein with Poly-Threonine Motif M. L. A. Khanl, M. Tabish, T. Fukushigel1 S. Tsukita2, M. Itoh , Sh. Tsukita , and S. S. Siddiqui. (1): Lab. of Molecular Biology, Dept of Ecological Engg. Toyohashi Univ. Technology, Toyohashi 441, and (2). National Institute for Physiological Sciences, Okazaki 444, Japan.
-
[
Mech Ageing Dev,
2009]
Energy production via oxidative phosphorylation generates a mitochondrial membrane potential (DeltaPsi(m)) across the inner membrane. In this work, we show that a lower DeltaPsi(m) is associated with increased lifespan in Caenorhabditis elegans. The long-lived mutants
daf-2(
e1370),
age-1(
hx546),
clk-1(
qm30),
isp-1(
qm150) and
eat-2(
ad465) all have a lower DeltaPsi(m) than wild type animals. The lower DeltaPsi(m) of
daf-2(
e1370) is
daf-16 dependent, indicating that the insulin-like signaling pathway not only regulates lifespan but also mitochondrial energetics. RNA interference (RNAi) against 17 genes shown to extend lifespan also decrease DeltaPsi(m). Furthermore, lifespan can be significantly extended with the uncoupler carbonylcyanide-3-chlorophenylhydrazone (CCCP), which dissipates DeltaPsi(m). We conclude that longevity pathways converge on the mitochondria and lead to a decreased DeltaPsi(m). Our results are consistent with the 'uncoupling to survive' hypothesis, which states that dissipation of the DeltaPsi(m) will extend lifespan.
-
[
Arch Environ Contam Toxicol,
2005]
Fungi (Cunninghamella elegans ATCC 9245, Mucor ramannianus R-56, Aspergillus niger VKMF-1119, and Phanerochaete chrysosporium BKMF-1767) were tested to elucidate the biologic fate of the topical insect repellent N,N-diethyl-m-toluamide (DEET). The elution profile obtained from analysis by high-pressure liquid chromatography equipped with a reverse-phase C-18 column, showed that three peaks occurred after incubation of C. elegans, with which 1 mM DEET was combined as a final concentration. The peaks were not detected in the control experiments with either DEET alone or tested fungus alone. The metabolites produced by C. elegans exhibited a molecular mass of 207 with a fragment ion (m/z) at 135, a molecular mass of 179 with an m/z at 135, and a molecular mass of 163 with an m/z at 119, all of which correspond to N,N-diethyl-m-toluamide-N-oxide, N-ethyl-m-toluamide-N-oxide, and N-ethyl-m-toluamide, respectively. M. ramannianus R-56 also produced N, N-diethyl-m-toluamide-N-oxide and N-ethyl-m-toluamide but did not produce N-ethyl-m-toluamide-N-oxide. For the biologic toxicity test with DEET and its metabolites, the freshwater zooplankton Daphnia magna was used. The biologic sensitivity in decreasing order was DEET > N-ethyl-m-toluamide > N,N-diethyl-m-toluamide-N-oxide. Although DEET and its fungal metabolites showed relatively low mortality compared with other insecticides, the toxicity was increased at longer exposure periods. These are the first reports of the metabolism of DEET by fungi and of the biologic toxicity of DEET and its fungal metabolites to the freshwater zooplankton D. magna.