Mitochondrial defects underlie a multitude of human diseases. Genetic manipulation of mitochondrial regulatory pathways represents a potential therapeutic approach. We have carried out a high-throughput overexpression screen for genes that affect mitochondrial abundance or activity using flow-cytometry-based enrichment of a cell population expressing a high-complexity, concentration-normalized pool of human ORFs. The screen identified 94 candidate mitochondrial regulators including the nuclear protein GLTSCR2, also known as PICT1. GLTSCR2 enhances mitochondrial function and is required for the maintenance of oxygen consumption, consistent with a pivotal role in the control of cellular respiration. RNAi inactivation of the Caenorhabditis elegans ortholog of GLTSCR2 reduces respiration in worms, indicating functional conservation across species. GLTSCR2 controls cellular proliferation and metabolism via the transcription factor Myc, and is induced by mitochondrial stress, suggesting it may constitute a significant component of the mitochondrial signaling pathway.
Modification, by the addition of lipid-derived groups, is an important determinant of the correct expression of a variety of polypeptides involved in signal transduction. Myristic and palmitic acid are the predominant fatty acids attached to proteins in eucaryotes. Myristic acid is normally linked, cotranslationally, via an amide bond to an N-terminal glycine. In contrast, palmitic acid attachment occurs post-translationally via an alkali-labile ester or thioester linkage...
How does physiological state affect the reproductive behavior of an organism? Two new studies in Caenorhabditis elegans implicate an ancient serotonergic neuronal circuit in the link between these two outputs- reproductive behavior and physiology.
In this issue of The EMBO Journal, Wilson et al (2012) elegantly discovered an important new axis for intestinal homeostasis and cancer, using an RNAi screen to enhance the RAS-induced multivulva (MUV) phenotype in Caenorhabditis elegans.
Gamete fusion is a pivotal step during fertilization to create an organism of the next generation. In C. elegans, since oocytes have no thick egg coat like the zona pellucida, perhaps spermatozoa directly bind to and fuse with the oocyte plasma membrane (PM). Thus, C. elegans is an excellent model to investigate how a spermatozoon and an oocyte fuse together.