[
1987]
Since the last review in this series [Johnson, 1985], many papers have appeared dealing directly with the aging process in both Caenorhabditis elegans and Turbatrix aceti. We will review this work and also briefly review other areas of C. elegans research that may impact on the study of aging. C. elegans has become a major biological model; four "News" articles in Science [Lewin, 1984a,b; Marx, 1984a,b] and inclusion as one of three developmental genetics models in a recent text [Wilkins, 1986] indicate its importance. Recent work has verified earlier results and has advanced progress toward new goals, such as routine molecular cloning. The aging studies reviewed here, together with new findings from other areas of C. elegans research, lay the groundwork for rapid advances in our understanding of aging in nematodes. Several areas of research in C. elegans have been reviewed recently: the genetic approach to understanding the cell lineage [Sternberg and Horvitz, 1984] and a brief summary of cell lineage mutants [Hedgecock, 1985]. The specification of neuronal development and neural connectivity has been a continuing theme in C. elegans research and reviews of these areas have also appeared [Chalfie, 1984; White, 1985]. A major genetic advance is the development of reliable, if not routine, mosaic analysis [Herman, 1984; Herman and Kari, 1985], which is useful for the genetic analysis of tissue-limited gene expression. Hodgkin [1985] reviews studies on a series of mutants involved in the specification of sex. These include her mutations that cause XO worms (normally males) to develop as hermaphrodites and tra mutations that change XX hermaphrodites into phenotypic males. The work on the structure and development of nematode muscle has been summarized by Waterston and Francis [1985]. A comprehensive review of aging research, containing useful reference material on potential biomarkers, has appeared [Johnson and Simpson, 1985], as well as a review including
[
1987]
To my knowledge, a theory of "developmentally programmed aging" has never been explicitly stated, although the notion that aging has some relationship to development has certainly been proposed many times. In the preceding chapter (36), Dr. Hayflick has made a brief description of the central idea of developmental programming within aging. In order to discuss relevant evidence in this chapter, I would like to propose the following, somewhat more specific and operational definition: The theory of developmentally programmed aging posits that aging involves events controlled in ways recognizably similar to those that operate during development. This definition is perhaps a little less extreme than it might have been, since it uses the phrase "aging involves events" rather than the phrase "aging is caused by events." However, I think it captures most of the usual connotations of "developmentally programmed aging," and it at least has the virtue of testability. Of course, to test the theory, as defined, requires evidence of several sorts. In particular, it requires (a) that we understand how some aging events are controlled, (b) that we understand how some developmental events are controlled, and (c) that we know how to recognize whether there is or is not similarity between the two. A central message of what follows is that we are really only at the beginning of being able to test this theory, although some lines of approach do appear
[
1994]
Nematodes have been cultured continuously in the laboratory since 1944 when Margaret Briggs Gochnauer isolated and cultured the free-living hermaphroditic species Caenorhabditis briggsae. Work with C. briggsae and other rhabditid nematodes, C. elegans, Rhabditis anomala, and R. pellio, demonstrated the relative ease with which they could be cultured. The culturing techniques described here were developed for C. elegans, but are generally suitable (to varying degrees) for other free-living nematodes. Whereas much of the early work involved axenic culturing, most of these techniques are no longer in common use and are not included here. In the 1970s C. elegans became the predominant research model due to work by Brenner and co-workers on the genetics and development of this species. An adult C. elegans is about 1.5 mm long, and under optimal laboratory conditions has a life cycle of approximately 3 days. There are two sexes, males and self-fertile hermaphrodites, that are readily distinguishable as adults. The animals are transparent throughout the life cycle, permitting observation of cell divisions in living animals using differential interference microscopy. The complete cell lineage and neural circuitry have been determined and a large collection of behavioral and anatomical mutants have been isolated. C. elegans has six developmental stages: egg, four larval stages (L1-L4), and adult. Under starvation conditions or specific manipulations of the culture conditions a developmentally arrested dispersal stage, the dauer larva, can be formed as an alternative third larval stage. Many of the protocols included here and other experimental protocols have been summarized in "The Nematode Caenorhabditis elegans". We also include a previously unpublished method for long-term chemostat cultures of C. elegans. General laboratory culture conditions for nematode parasites of animals have been described, but none of these nematodes can be cultured in the laboratory through more than one life cycle. Marine nematodes and some plant parasites have been cultured xenically or with fungi. Laboratory cultivation of several plant parasites on Arabidopsis thaliana seedlings in agar petri plates has also been reported.