[
J Cell Biol,
2006]
Vertebrates produce multiple chondroitin sulfate proteoglycans that play important roles in development and tissue mechanics. In the nematode Caenorhabditis elegans, the chondroitin chains lack sulfate but nevertheless play essential roles in embryonic development and vulval morphogenesis. However, assignment of these functions to specific proteoglycans has been limited by the lack of identified core proteins. We used a combination of biochemical purification, Western blotting, and mass spectrometry to identify nine C. elegans chondroitin proteoglycan core proteins, none of which have homologues in vertebrates or other invertebrates such as Drosophila melanogaster or Hydra vulgaris. CPG-1/CEJ-1 and CPG-2 are expressed during embryonic development and bind chitin, suggesting a structural role in the egg. RNA interference (RNAi) depletion of individual CPGs had no effect on embryonic viability, but simultaneous depletion of CPG-1/CEJ-1 and CPG-2 resulted in multinucleated single-cell embryos. This embryonic lethality phenocopies RNAi depletion of the SQV-5 chondroitin synthase, suggesting that chondroitin chains on these two proteoglycans are required for cytokinesis.
[
Genetics,
2020]
Environmental toxicants are chemicals that negatively affect human health. Although there are numerous ways to limit exposure, the ubiquitous nature of certain environmental toxicants makes it impossible to avoid them entirely. Consequently, scientists are continuously working toward developing strategies for combating their harmful effects. Using the nematode <i>Caenorhabditis elegans</i>, a model with many genetic and physiological similarities to humans, researchers in the Colaiacovo laboratory have identified several molecular mechanisms by which the toxic agent bisphenol A (BPA) interferes with reproduction. Here, we address their recent discovery that a widely available compound, Coenzyme Q10 (CoQ10), can rescue BPA-induced damage. This work is significant in that it poses a low-cost method for improving reproductive success in humans. The goal of this primer is to assist educators and students with navigating the paper entitled "Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the <i>Caenorhabditis elegans</i> Germline." It is ideally suited for integration into an upper-level undergraduate course such as Genetics, Cell and Molecular Biology, Developmental Biology, or Toxicology. The primer provides background information on the history of BPA, the utility of the <i>C. elegans</i> germ line as a model for studying reproductive toxicity, and research methods including assessment of programmed cell death, fluorescent microscopy applications, and assays to quantify gene expression. Questions for deeper exploration in-class or online are provided.<b>Related article in <i>GENETICS</i>:</b> Hornos Carneiro MF, Shin N, Karthikraj R, Barbosa F Jr, Kannan K, Colaiacovo MP. Antioxidant CoQ10 restores fertility by rescuing bisphenol A-induced oxidative DNA damage in the <i>Caenorhabditis elegans</i> Germline. Genetics 214:381-395.