-
[
Ecotoxicol Environ Saf,
2007]
The polychlorinated insecticide toxaphene belonged to the most used pesticides in the 20th century. Even recently, significant residues have been found in soils at various sites in the world. However, knowledge on toxicity to soil organisms is limited. In this study, the effects of toxaphene on soil invertebrates Folsomia candida, Eisenia fetida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans, and microorganisms were investigated. Among the organisms tested, F. candida was the most sensitive. The 50% effect on survival and reproduction output (LC(50) and EC(50)) was found at concentrations of 10.4 and 3.6mg/kg, respectively. Sensitivity of other organisms was significantly lower with effective concentrations at tens or hundreds of mg/kg. Our data on soil toxicity were recalculated to soil pore-water concentrations and good accordance with available data reported for aquatic toxicity was found. Since soil concentrations at some sites are comparable to concentrations effective in our tests, toxaphene may negatively affect soil communities at these sites.
-
[
Ecotoxicol Environ Saf,
2007]
Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28mg/kg was estimated for the soil environment, based on our data.
-
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].
-
Berynskyy M, Morimoto RI, Bukau B, Stengel F, Kirstein J, Szlachcic A, Arnsburg K, Stank A, Scior A, Nillegoda NB, Gao X, Guilbride DL, Aebersold R, Wade RC, Mayer MP
[
Nature,
2015]
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
-
[
Mol Immunol,
1999]
Invertebrate cells lack the
p53 recombination checkpoint but contain mobile DNA sequences that transpose by a mechanism in part shared with excision of the V(D)J recombination signal sequences (RSS). In this work, inversion, deletion, and duplication of sequences associated with an invertebrate C. elegans Tc6 element is described. The structure of this C. elegans sequence and other dispersed Tc6 elements suggests that covalently closed 'hairpin' structures are not unique to excision of the V(D)J RSS by the RAG proteins, but rather can be generated by transposases at transposon termini leading to characteristic inversion and duplication events. Comparative analysis of recombination events at invertebrate sequences resembling the vertebrate V(D)J RSS may be useful in understanding V(D)J recombination-mediated recombination events in malignant vertebrate cells or genetic diseases such as ataxia telangectasia, in which the
p53 recombination checkpoint is defective.
-
[
Phytother Res,
2008]
A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium falciparum D6 and W2 strains (IC(50) = 1.9 and 2.0 microg/mL, respectively), while totarol (6), ferruginol (7) and 7beta-hydroxyabieta-8,13-diene-11,12-dione (8) inhibited Leishmania donovani promastigotes with IC(50) values of 3.5-4.6 microg/mL. In addition, totarol demonstrated nematicidal and antifouling activities against Caenorhabditis elegans and Artemia salina at a concentration of 80 microg/mL and 1 microg/mL, respectively. The resinous exudate of J. virginiana afforded known antibacterial E-communic acid (4) and 4-epi-abietic acid (5), while the volatile oil from its trunk wood revealed large quantities of cedrol (9). Using GC/MS, the two known abietanes totarol (6) and ferruginol (7) were identified from the berries of J. procera, J. excelsa and J. phoenicea.
-
[
Ecotoxicol Environ Saf,
2008]
The aims of this study were: (i) to investigate the toxicity of N-heterocyclic polyaromatic hydrocarbons (NPAHs) quinoline, acridine, phenazine, and 1,10-phenanthroline to the soil invertebrates Eisenia fetida, Enchytraeus crypticus, Folsomia candida, and Caenorhabditis elegans, (ii) to compare the toxicity of four NPAHs and the species sensitivity, and (iii) to discuss possible risks of these compounds in soils. Different toxicities were found for the tested NPAHs which might be partially explained by their structure and properties. Effect concentrations expressed as soil pore-water concentrations were related to log K(ow), which indicated narcosis as the most probable mode of toxic action. The species sensitivity decreased in the rank: springtails >enchytraeids=earthworms> nematodes. Predicted no-effect concentration (PNEC) values were calculated for all tested species giving values from 0.5 to 6.8 mg/kg. It is unlikely that there is a risk for soil organisms in natural soils where lower NPAHs concentrations are expected.
-
[
Aging Cell,
2017]
Protein aggregation is enhanced upon exposure to various stress conditions and aging, which suggests that the quality control machinery regulating protein homeostasis could exhibit varied capacities in different stages of organismal lifespan. Recently, an efficient metazoan disaggregase activity was identified invitro, which requires the Hsp70 chaperone and Hsp110 nucleotide exchange factor, together with single or cooperating J-protein co-chaperones of classes A and B. Here, we describe how the orthologous Hsp70s and J-protein of Caenorhabditis elegans work together to resolve protein aggregates both invivo and invitro to benefit organismal health. Using an RNAi knockdown approach, we show that class A and B J-proteins cooperate to form an interactive flexible network that relocalizes to protein aggregates upon heat shock and preferentially recruits constitutive Hsc70 to disaggregate heat-induced protein aggregates and polyQ aggregates that form in an age-dependent manner. Cooperation between class A and B J-proteins is also required for organismal health and promotes thermotolerance, maintenance of fecundity, and extended viability after heat stress. This disaggregase function of J-proteins and Hsc70 therefore constitutes a powerful regulatory network that is key to Hsc70-based protein quality control mechanisms in metazoa with a central role in the clearance of aggregates, stress recovery, and organismal fitness in aging.
-
[
Nat Genet,
2002]
Mice that are homozygous with respect to a mutation (ax(J)) in the ataxia (ax) gene develop severe tremors by 2-3 weeks of age followed by hindlimb paralysis and death by 6-10 weeks of age. Here we show that ax encodes ubiquitin-specific protease 14 (Usp14). Ubiquitin proteases are a large family of cysteine proteases that specifically cleave ubiquitin conjugates. Although Usp14 can cleave a ubiquitin-tagged protein in vitro, it is unable to process polyubiquitin, which is believed to be associated with the protein aggregates seen in Parkinson disease, spinocerebellar ataxia type 1 (SCA1; ref. 4) and gracile axonal dystrophy (GAD). The physiological substrate of Usp14 may therefore contain a mono-ubiquitin side chain, the removal of which would regulate processes such as protein localization and protein activity. Expression of Usp14 is significantly altered in ax(J)/ax(J) mice as a result of the insertion of an intracisternal-A particle (IAP) into intron 5 of Usp14. In contrast to other neurodegenerative disorders such as Parkinson disease and SCA1 in humans and GAD in mice, neither ubiquitin-positive protein aggregates nor neuronal cell loss is detectable in the central nervous system (CNS) of ax(J) mice. Instead, ax(J) mice have defects in synaptic transmission in both the central and peripheral nervous systems. These results suggest that ubiquitin proteases are important in regulating synaptic activity in mammals.
-
[
Development,
1991]
In wild-type Caenorhabditis elegans hermaphrodites, two bilaterally symmetric sex myoblasts (SMs) migrate anteriorly to flank the precise center of the gonad, where they divide to generate the muscles required for egg laying (J. E. Sulston and H. R. Horvitz (1977) Devl Biol. 56, 110-156). Although this migration is largely independent of the gonad, a signal from the gonad attracts the SMs to their precise final positions (J. H. Thomas, M. J. Stern and H. R. Horvitz (1990) Cell 62, 1041-1052). Here we show that mutations in either of two genes,
egl-15 and
egl-17, cause the premature termination of the migrations of the SMs. This incomplete migration is caused by the repulsion of the SMs by the same cells in the somatic gonad that are the source of the attractive signal in wild-type animals.