[
Food Funct,
2021]
Aging is an inevitable, irreversible, and complex process of damage accumulation and functional decline, increasing the risk of various chronic diseases. However, for now no drug can delay aging process nor cure aging-related diseases. Nutritional intervention is considered as a key and effective strategy to promote healthy aging and improve life quality. Small berries, as one of the most common and popular fruits, have been demonstrated to improve cognitive function and possess neuroprotective activities. However, the anti-aging effects of small berries have not been systematically elucidated yet. This review mainly focuses on small berries' anti-aging activity studies involving small berry types, active components, the utilized model organism <i>Caenorhabditis elegans</i> (<i>C. elegans</i>), related signaling pathways, and molecular mechanisms. The purpose of this review is to propose effective strategies to evaluate the anti-aging effects of small berries and provide guidance for the development of anti-aging supplements from small berries.
[
Neurotoxicology,
2008]
Manganese (Mn) is a transition metal that is essential for normal cell growth and development, but is toxic at high concentrations. While Mn deficiency is uncommon in humans, Mn toxicity is known to be readily prevalent due to occupational overexposure in miners, smelters and possibly welders. Excessive exposure to Mn can cause Parkinson''s disease-like syndrome; patients typically exhibit extrapyramidal symptoms that include tremor, rigidity and hypokinesia [Calne DB, Chu NS, Huang CC, Lu CS, Olanow W. Manganism and idiopathic parkinsonism: similarities and differences. Neurology 1994;44(9):1583-6; Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann NY Acad Sci 2004;1012:115-28]. Mn-induced motor neuron diseases have been the subjects of numerous studies; however, this review is not intended to discuss its neurotoxic potential or its role in the etiology of motor neuron disorders. Rather, it will focus on Mn uptake and transport via the orthologues of the divalent metal transporter (DMT1) and its possible implications to Mn toxicity in various categories of eukaryotic systems, such as in vitro cell lines, in vivo rodents, the fruitfly, Drosophila melanogaster, the honeybee, Apis mellifera L., the nematode, Caenorhabditis elegans and the baker''s yeast, Saccharomyces cerevisiae.