[
WormBook,
2006]
The C. elegans genome contains sequences similar to a large number of mammalian genes implicated in the assembly, processing, and modification of glycans. In recent years, spectacular progress has been made in developing and refining tools to obtain structural information with small amounts of material, increasing our understanding of glycan structural complexity in this organism. These approaches have revealed novel N- and O-glycan structures in C. elegans, as well as a high degree of conservation in glycosaminoglycan structure. In parallel, studies in which glycan structure is perturbed by genetic manipulation have begun to reveal the roles of specific carbohydrate moieties in developmental and physiological processes. This review summarizes recent work elucidating the fine structure of complex carbohydrates in C. elegans as well as genetic studies that have uncovered novel roles for complex carbohydrates in developmental processes.
[
Parasitol Today,
2000]
Gene discovery programs centred around expressed sequence tag (EST) and genome sequencing projects have predictably led to an exponential surge in the number of parasite gene sequences deposited in public databases. To take advantage of this wealth of sequence information, it is essential to develop rapid methods for elucidating the biological function or mode of action of individual genes. Here, Patricia Kuwabara and Alan Coulson discuss the virtues of a powerful epigenetic gene disruption technique, RNA-mediated interference (RNAi), which was originally developed for the nematode Caenorhabditis elegans. It is anticipated that this technique will not only provide insights into gene function, but also help investigators to mine the genome for candidate drug intervention or vaccine development targets, some of which may not be readily apparent on the basis of sequence information alone.