[
1992]
In vertebrates, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are polymorphic enzymes presenting both globular and asymmetric forms. In invertebrates, only AChE has been characterized so far that presents a reduced molecular diversity. In insects for example the major molecular form of AChE is an amphiphilic dimeric form attached to the membrane through a glycolipid covalently linked at the C-terminus of each catalytic subunit. This AChE has a substrate specificity intermediate to those of mammalina AChE and BChE. A glycoplipid-anchored 7.5S from has also been observed in the trematode Schistosoma mansoni. Asymmetric forms have never been convincingly reported in invertebrates except in the more evolved animals such as Amphioxius. In the latter case also there is no BChE but AChE presents catalytic properties intermediate to those of vertebrate AChE and BChE. We are now interested in nematode AChE(s) for the following reasons: -several species are agricultural pest and it is important to get further informations on the target of potential nematicides; -it has been shown that at least three different genes code for AChE in Caenorhabditis elegans. It is therefore interesting to see whether the presence of multiple genes results in an increased molecular diversity, to define what are the structural characteristics of each gene product and finally to clone and sequence thee three genes for evolutionary relationships with the other members of the cholinesterase
[
1987]
Since the last review in this series [Johnson, 1985], many papers have appeared dealing directly with the aging process in both Caenorhabditis elegans and Turbatrix aceti. We will review this work and also briefly review other areas of C. elegans research that may impact on the study of aging. C. elegans has become a major biological model; four "News" articles in Science [Lewin, 1984a,b; Marx, 1984a,b] and inclusion as one of three developmental genetics models in a recent text [Wilkins, 1986] indicate its importance. Recent work has verified earlier results and has advanced progress toward new goals, such as routine molecular cloning. The aging studies reviewed here, together with new findings from other areas of C. elegans research, lay the groundwork for rapid advances in our understanding of aging in nematodes. Several areas of research in C. elegans have been reviewed recently: the genetic approach to understanding the cell lineage [Sternberg and Horvitz, 1984] and a brief summary of cell lineage mutants [Hedgecock, 1985]. The specification of neuronal development and neural connectivity has been a continuing theme in C. elegans research and reviews of these areas have also appeared [Chalfie, 1984; White, 1985]. A major genetic advance is the development of reliable, if not routine, mosaic analysis [Herman, 1984; Herman and Kari, 1985], which is useful for the genetic analysis of tissue-limited gene expression. Hodgkin [1985] reviews studies on a series of mutants involved in the specification of sex. These include her mutations that cause XO worms (normally males) to develop as hermaphrodites and tra mutations that change XX hermaphrodites into phenotypic males. The work on the structure and development of nematode muscle has been summarized by Waterston and Francis [1985]. A comprehensive review of aging research, containing useful reference material on potential biomarkers, has appeared [Johnson and Simpson, 1985], as well as a review including
[
1987]
To my knowledge, a theory of "developmentally programmed aging" has never been explicitly stated, although the notion that aging has some relationship to development has certainly been proposed many times. In the preceding chapter (36), Dr. Hayflick has made a brief description of the central idea of developmental programming within aging. In order to discuss relevant evidence in this chapter, I would like to propose the following, somewhat more specific and operational definition: The theory of developmentally programmed aging posits that aging involves events controlled in ways recognizably similar to those that operate during development. This definition is perhaps a little less extreme than it might have been, since it uses the phrase "aging involves events" rather than the phrase "aging is caused by events." However, I think it captures most of the usual connotations of "developmentally programmed aging," and it at least has the virtue of testability. Of course, to test the theory, as defined, requires evidence of several sorts. In particular, it requires (a) that we understand how some aging events are controlled, (b) that we understand how some developmental events are controlled, and (c) that we know how to recognize whether there is or is not similarity between the two. A central message of what follows is that we are really only at the beginning of being able to test this theory, although some lines of approach do appear