[
International Worm Meeting,
2021]
Axonal regeneration is a promising approach to overcome impaired functionality due to axonal injury. In mammals, central nervous system has poor regenerative capacity due to both extrinsic and intrinsic factors. The regenerative capacity also declines significantly with ageing. Therefore, functional axon regeneration in adulthood is challenging and needs more understanding. The pharmacological manipulations are not very successful for functional restoration whereas rehabilitation and physical activity shows improvement. As physical exercise has complex systemic effects, understanding the downstream effectors of physical exercise that is relevant for axon regeneration might be useful. Studying this using simple model organism has several advantages. Using posterior gentle touch circuit neuron (PLM) of Caenorhabditis elegans, we are studying effect of swimming exercise on functional restoration after laser assisted axotomy. We found that a single swimming exercise session of 90 minutes, which is an established paradigm of exercise in worm (Laranjeiro et al., 2017; Laranjeiro et al., 2019) improves functional recovery irrespective of age. However multiple swimming session is required for older worms (A5 stage). Anatomical correlation showed that swimming session improves regrowth initiation, regrowth length and functional connections. We found that the energy sensor kinase AMPK/AAK-2 plays an essential role mediating swimming benefits. Characterizing tissue specific requirement, we found that it has both cell autonomous (PLM neuron) and non-autonomous (muscle) requirement. Pharmacological activation of AMPK/AAK-2 showed enhanced functional restoration similar to swimming. We are studying the downstream molecules and their specific roles in various tissues for swimming mediated functional enhancement which will be helpful for better implementation of this approach. References Laranjeiro R, Harinath G, Burke D, Braeckman BP, Driscoll M (2017) Single swim sessions in C. elegans induce key features of mammalian exercise. BMC Biology 15. Laranjeiro R, Harinath G, Hewitt JE, Hartman JH, Royal MA, Meyer JN, Vanapalli SA, Driscoll M (2019) Swim exercise in Caenorhabditis elegans extends neuromuscular and gut healthspan, enhances learning ability, and protects against neurodegeneration. Proc Natl Acad Sci U S A 116:23829-23839.