[
Nucleic Acids Res,
1988]
The Tc1-like transposable elements, originally described in Caenorhabditis elegans, have a much wider phylogenetic distribution than previously thought. In this paper, we demonstrate that Tc1 shares sequence identity in its open reading frame and terminal repeats with a new transposable element Barney (also known as TCb1- Transposon Caenorhabditis briggsae 1). Barney was detected and isolated by Tc1 hybridization from the closely related nematode species, Caenorhabditis briggsae. The conserved open reading frames of Tc1 and Barney share identity with a structurally similar family of elements named HB found in Drosophila melanogaster, after the introduction of 3 small centrally located deletions in HB1. These reading frames would code for proteins with 30% amino acid identity (42% when conservative changes are included). Tc1, Barney and HB1 contain highly conserved blocks of amino acids which are likely to be in the functional domains of the putative transposase.
[
J Mol Evol,
1990]
We have identified two repetitive element families in the genome of the nematode Caenorhabditis briggsae with extensive sequence identity to the Caenorhabditis elegans transposable element Tc1. Five members each of the TCb1 (previously known as Barney) and TCb2 families were isolated by hybridization to a Tc1 probe. Tc1-hybridizing repetitive elements were grouped into either the TCb1 or TCb2 family based on cross-hybridization intensities among the C. briggsae elements. The genomic copy number of the TCb1 family is 15 and the TCb2 family copy number is 33 in the C. briggsae strain G16. The two transposable element families show numerous genomic hybridization pattern differences between two C. briggsae strains, suggestive of transpositional activity. Two members of the TCb1 family, TCb1#5 and TCb1#10, were sequenced. Each of these two elements had suffered an independent single large deletion. TCb1#5 had a 627-bp internal deletion and TCb1#10 had lost 316 bp of one end. The two sequenced TCb1 elements were highly conserved over the sequences they shared. A 1616-bp composite TCb1 element was constructed from TCb1#5 and TCb1#10. The composite TCb1 element has 80-bp terminal inverted repeats with three nucleotide mismatches and two open reading frames (ORFs) on opposite strands. TCb1 and the 1610-bp Tc1 share 58% overall nucleotide sequence identity, and the greatest similarity occurs in their ORF1 and inverted repeat termini.