-
[
Trends Biochem Sci,
1984]
For this 100th issue of TIBS, we were asked to look back at our subjects about eight years to when the journal first appeared and to discuss the important developments since that time. I found myself looking further back and I beg the reader's indulgence for some history that goes back some 21 years to the origins of our work on Caenorhabditis elegans.
-
[
Curr Biol,
2007]
New studies on the molecular logic of synapse specificity in the fly and worm have brought neurobiologists back to an ancient family of morphogens best known for establishing pattern in the early embryonic nervous system.
-
[
Science,
1994]
Worms, butterflies, and chimpanzees all have the same body axes-head and tail, front and back, and left and right sides. How are these axes established during development? Is there a single molecular map used by most metazoan embryos or have similar coordinates been achieved during evolution by diverse routes? A comparison of the mechanisms that establish body axes in distantly related organisms can begin to answer this fundamental question.
-
[
Biochem Soc Trans,
2004]
IFT (intraflagellar transport) assembles and maintains sensory cilia on the dendritic endings of chemosensory neurons within the nematode Caenorhabditis elegans. During IFT, macromolecular protein complexes called IFT particles (which carry ciliary precursors) are moved from the base of the sensory cilium to its distal tip by anterograde IFT motors (kinesin-II and Osm-3 kinesin) and back to the base by retrograde IFT-dynein [Rosenbaum and Witman (2002) Nat. Rev. Mol. Cell Biol. 3, 813-825; Scholey (2003) Annu. Rev. Cell Dev. Biol. 19, 423-443; and Snell, Pan and Wang (2004) Cell 117, 693-697]. In the present study, we describe the protein machinery of IFT in C. elegans, which we have analysed using time-lapse fluorescence microscopy of green fluorescent protein-fusion proteins in concert with ciliary mutants.
-
[
Genome Res,
2000]
Whole -genome sequence comparisons between bacterial sequences are one thing, but try comparing two eukaryotic genomes, each containing tens or hundreds of millions of nucleotides. And try to do it on your desktop machine in your office or at home. That is what Kent and Zahler have tried, and the results are presented in this issue of Genome Research. The use of evolutionary conservation to unveil functional information contained within genomes is not new. In the case of the nematode, comparisons of Caenorhabditis elegans to its close relative Caenorhabditis briggsae go back as far as Emmons et al.
-
[
Genetics,
2019]
The <b>T</b>arget <b>o</b>f <b>R</b>apamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and <i>in vivo</i> studies, <i>Caenorhabditis elegans</i> has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, <i>C. elegans</i> has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in <i>C. elegans</i>, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for <i>C. elegans</i> biology, and how <i>C. elegans</i> work has developed paradigms of great importance for the broader TOR field.
-
[
Curr Opin Genet Dev,
2015]
In Caenorhabditis elegans, males have one X chromosome and hermaphrodites have two. Emerging evidence indicates that the male X is transcriptionally more active than autosomes to balance the single X to two sets of autosomes. Because upregulation is not limited to males, hermaphrodites need to strike back and downregulate expression from the two X chromosomes to balance gene expression in their genome. Hermaphrodite-specific downregulation involves binding of the dosage compensation complex to both Xs. Advances in recent years revealed that the action of the dosage compensation complex results in compaction of the X chromosomes, changes in the distribution of histone modifications, and ultimately limiting RNA Polymerase II loading to achieve chromosome-wide gene repression.
-
Aravind L, Chervitz SA, Harris MA, Smith TL, Cherry JM, Mohr S, Ball CA, Koonin EV, Dwight SS, Sherlock G, Dolinski K, Botstein D, Weng S
[
Science,
1998]
Comparative analysis of predicted protein sequences encoded by the genomes of Caenorhabditis elegans and Saccharomyces cerevisiae suggests that most of the core biological functions are carried out by orthologous proteins (proteins of different species that can be traced back to a common ancestor) that occur in comparable numbers. The specialized processes of signal transduction and regulatory control that are unique to the multicellular worm appear to use novel proteins, many of which re-use conserved domains. Major expansion of the number of some of these domains seen in the worm may have contributed to the advent of multicellularity. The proteins conserved in yeast and worm are likely to have orthologs throughout eukaryotes; in contrast, the proteins unique to the worm may well define metazoans.
-
[
J Cell Biochem,
2013]
microRNA (miRNA) is a family of small, non-coding RNA first discovered as an important regulator of development in Caenorhabditis elegans (C. elegans). Numerous miRNAs have been found in C. elegans, and some of them are well conserved in many organisms. Though, the biologic function of miRNAs in C. elegans was largely unknown, more and more studies support the idea that miRNA is an important molecular for C. elegans. In this review, we revisit the research progress of miRNAs in C. elegans related with development, aging, cancer, and neurodegenerative diseases and compared the function of miRNAs between C. elegans and human.
-
[
Methods Mol Biol,
2006]
The genome of the nematode Caenorhabditis elegans was the first animal genome sequenced. Subsequent sequencing of the Caenorhabditis briggsae genome enabled a comparison of the genomes of two nematode species. In this chapter, we describe the methods that we used to compare the C. elegans genome to that of C. briggsae. We discuss how these methods could be developed to compare the C. elegans and C. briggsae genomes to those of Caenorhabditis remanei, C. n. sp. represented by strains PB2801 and CB5161, among others (1), and Caenorhabditis japonica, which are currently being sequenced.