-
[
Sci Rep,
2013]
Availability of food is often a limiting factor in nature. Periods of food abundance are followed by times of famine, often in unpredictable patterns. Reliable information about the environment is a critical ingredient of successful survival strategy. One way to improve accuracy is to integrate information communicated by other organisms. To test whether such exchange of information may play a role in determining starvation survival strategies, we studied starvation of L1 larvae in C. elegans and other Caenorhabditis species. We found that some species in genus Caenorhabditis, including C. elegans, survive longer when starved at higher densities, while for others survival is independent of the density. The density effect is mediated by chemical signal(s) that worms release during starvation. This starvation survival signal is independent of ascarosides, a class of small molecules widely used in chemical communication of C. elegans and other nematodes.
-
[
Sci Rep,
2015]
We describe a new type of collective behavior in C. elegans nematodes, aggregation of starved L1 larvae. Shortly after hatching in the absence of food, L1 larvae arrest their development and disperse in search for food. In contrast, after two or more days without food, the worms change their behavior--they start to aggregate. The aggregation requires a small amount of ethanol or acetate in the environment. In the case of ethanol, it has to be metabolized, which requires functional alcohol dehydrogenase
sodh-1. The resulting acetate is used in de novo fatty acid synthesis, and some of the newly made fatty acids are then derivatized to glycerophosphoethanolamides and released into the surrounding medium. We examined several other Caenorhabditis species and found an apparent correlation between propensity of starved L1s to aggregate and density dependence of their survival in starvation. Aggregation locally concentrates worms and may help the larvae to survive long starvation. This work demonstrates how presence of ethanol or acetate, relatively abundant small molecules in the environment, induces collective behavior in C. elegans associated with different survival strategies.
-
Izrayelit Y, Baugh LR, Avery L, Srinivasan J, Jordan JM, Bose N, Jo Y, von Reuss SH, Yim JJ, Artyukhin AB, Sternberg PW, Schroeder FC, Cheong M
[
J Biol Chem,
2013]
The ascarosides, small-molecule signals derived from combinatorial assembly of primary metabolism-derived building blocks, play a central role in Caenorhabditis elegans biology and regulate many aspects of development and behavior in this model organism as well as in other nematodes. Using HPLC-MS/MS-based targeted metabolomics, we identified novel ascarosides incorporating a side chain derived from succinylation of the neurotransmitter octopamine. These compounds, named osas#2, osas#9, and osas#10, are produced predominantly by L1 larvae, where they serve as part of a dispersal signal, whereas these ascarosides are largely absent from the metabolomes of other life stages. Investigating the biogenesis of these octopamine-derived ascarosides, we found that succinylation represents a previously unrecognized pathway of biogenic amine metabolism. At physiological concentrations, the neurotransmitters serotonin, dopamine, and octopamine are converted to a large extent into the corresponding succinates, in addition to the previously described acetates. Chemically, bimodal deactivation of biogenic amines via acetylation and succinylation parallels posttranslational modification of proteins via acetylation and succinylation of L-lysine. Our results reveal a small-molecule connection between neurotransmitter signaling and interorganismal regulation of behavior and suggest that ascaroside biosynthesis is based in part on co-option of degradative biochemical pathways.
-
[
J Am Chem Soc,
2018]
Peroxisomal -oxidation (po) is a highly conserved fat metabolism pathway involved in the biosynthesis of diverse signaling molecules in animals and plants. In Caenorhabditis elegans, po is required for the biosynthesis of the ascarosides, signaling molecules that control development, lifespan, and behavior in this model organism. Via comparative mass spectrometric analysis of po mutants and wildtype, we show that po in C. elegans and the satellite model P. pacificus contributes to life stage-specific biosynthesis of several hundred previously unknown metabolites. The po-dependent portion of the metabolome is unexpectedly diverse, e.g. intersecting with nucleoside and neurotransmitter metabolism. Cell type-specific restoration of po in po-defective mutants further revealed that po-dependent sub-metabolomes differ between tissues. These results suggest that interactions of fat, nucleoside, and other primary metabolism pathways can generate structural diversity reminiscent of that arising from combinatorial strategies in microbial natural product biosynthesis.
-
[
PLoS Comput Biol,
2021]
We describe a mathematical model for the aggregation of starved first-stage C elegans larvae (L1s). We propose that starved L1s produce and respond chemotactically to two labile diffusible chemical signals, a short-range attractant and a longer range repellent. This model takes the mathematical form of three coupled partial differential equations, one that describes the movement of the worms and one for each of the chemical signals. Numerical solution of these equations produced a pattern of aggregates that resembled that of worm aggregates observed in experiments. We also describe the identification of a sensory receptor gene,
srh-2, whose expression is induced under conditions that promote L1 aggregation. Worms whose
srh-2 gene has been knocked out form irregularly shaped aggregates. Our model suggests this phenotype may be explained by the mutant worms slowing their movement more quickly than the wild type.
-
[
MicroPubl Biol,
2019]
Nematodes, such as the model organism Caenorhabditis elegans, communicate environmental and developmental information with conspecifics through a class of small-molecule pheromones termed ascarosides (Butcher, 2017; Chute and Srinivasan, 2014; Ludewig and Schroeder, 2013). Nematodes share ascaroside signaling pathways (Choe et al., 2012), but are also capable of eavesdropping on chemical signals of predatory species (Liu et al., 2018). Ascarosides signal vast arrays of information, either individually or as blends, based on concentration, sex, physiological state, and other ascarosides sensed (McGrath and Ruvinsky, 2019; Pungaliya et al., 2009; Srinivasan et al., 2008; Srinivasan et al., 2012). For instance, octopamine-succinylated ascaroside #9 (osas#9) is able to signal starvation conditions in the absence of other ascarosides (Artyukhin et al., 2013).C. elegans (Cel) is an androdioecious species, with the majority of the natural population comprised of self-fertilizing hermaphrodites, and a small proportion (<0.2%) being male (Hodgkin et al., 1979). There are two other similarly androdioecious species in the genus, C. briggsae (Cbr) and C. tropicalis (Ctr). All three species evolved their hermaphroditism separately and uniquely (Ellis and Lin, 2014). Of the male-attracting ascarosides secreted by C. elegans (ascr#2, ascr#3, ascr#4, and ascr#8), ascr#8 is the most potent (Pungaliya et al., 2009). Since ascr#8 is a male attractant in this hermaphroditic species, we asked if other hermaphroditic species retained the ability to attract males using this cue. Males from the gonochoristic (male-female) sister species to C. briggsae and C. tropicalis C. nigoni (Cni) and C. wallacei (Cwa), respectively were also assayed for their ability to respond to ascr#8. The closest relative of C. elegans, the gonochoristic C. inopinata (Cin, formerly C. sp. 34), which has been recently characterized (Kanzaki et al., 2018), was also tested, along with the JaponicaGroup gonochoristic species C. japonica(Cja) and C. afra(Caf).Dwell times were analyzed as previously described using a Spot Retention Assay (Narayan et al., 2016). Dwell times were transformed using a Base 2 Exponentiation (2n, wherein n is equal to the raw dwell time value) to generate only non-zero data in order to calculate fold-changes. The Logbase2 of the fold-changes was then calculated to normalize the data. All data sets were first checked for normality using a DAgostino
-
Pennington PR, Heistad RM, Nyarko JNK, Barnes JR, Bolanos MAC, Parsons MP, Knudsen KJ, De Carvalho CE, Leary SC, Mousseau DD, Buttigieg J, Maley JM, Quartey MO
[
Sci Rep,
2021]
The pool of -Amyloid (A) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for A peptides. We examined how a naturally occurring variant, e.g. A(1-38), interacts with the AD-related variant, A(1-42), and the predominant physiological variant, A(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that A(1-38) interacts differently with A(1-40) and A(1-42) and, in general, A(1-38) interferes with the conversion of A(1-42) to a -sheet-rich aggregate. Functionally, A(1-38) reverses the negative impact of A(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an A(1-42) phenotype in Caenorhabditis elegans. A(1-38) also reverses any loss of MTT conversion induced by A(1-40) and A(1-42) in HT-22 hippocampal neurons and APOE 4-positive human fibroblasts, although the combination of A(1-38) and A(1-42) inhibits MTT conversion in APOE 4-negative fibroblasts. A greater ratio of soluble A(1-42)/A(1-38) [and A(1-42)/A(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that A(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant A(1-42).
-
[
Front Pharmacol,
2020]
Oligomeric assembly of Amyloid- (A) is the main toxic species that contribute to early cognitive impairment in Alzheimer's patients. Therefore, drugs that reduce the formation of A oligomers could halt the disease progression. In this study, by using transgenic <i>Caenorhabditis elegans</i> model of Alzheimer's disease, we investigated the effects of frondoside A, a well-known sea cucumber <i>Cucumaria frondosa</i> saponin with anti-cancer activity, on A aggregation and proteotoxicity. The results showed that frondoside A at a low concentration of 1 M significantly delayed the worm paralysis caused by A aggregation as compared with control group. In addition, the number of A plaque deposits in transgenic worm tissues was significantly decreased. Frondoside A was more effective in these activities than ginsenoside-Rg3, a comparable ginseng saponin. Immunoblot analysis revealed that the level of small oligomers as well as various high molecular weights of A species in the transgenic <i>C. elegans</i> were significantly reduced upon treatment with frondoside A, whereas the level of A monomers was not altered. This suggested that frondoside A may primarily reduce the level of small oligomeric forms, the most toxic species of A. Frondoside A also protected the worms from oxidative stress and rescued chemotaxis dysfunction in a transgenic strain whose neurons express A. Taken together, these data suggested that low dose of frondoside A could protect against A-induced toxicity by primarily suppressing the formation of A oligomers. Thus, the molecular mechanism of how frondoside A exerts its anti-A aggregation should be studied and elucidated in the future.
-
[
Naturwissenschaften,
2004]
Animals respond to signals and cues in their environment. The difference between a signal (e.g. a pheromone) and a cue (e.g. a waste product) is that the information content of a signal is subject to natural selection, whereas that of a cue is not. The model free-living nematode Caenorhabditis elegans forms an alternative developmental morph (the dauer larva) in response to a so-called 'dauer pheromone', produced by all worms. We suggest that the production of 'dauer pheromone' has no fitness advantage for an individual worm and therefore we propose that 'dauer pheromone' is not a signal, but a cue. Thus, it should not be called a pheromone.
-
[
J Antibiot (Tokyo),
1990]
Cochlioquinone A, isolated from the fungus Helminthosporium sativum, was found to have nematocidal activity. Cochlioquinone A is a competitive inhibitor of specific [3H]ivermectin binding suggesting that cochlioquinone A and ivermectin interact with the same membrane receptor.