-
[
Mol Pharmacol,
1991]
Avermectins are a family of potent broad-spectrum anthelmintic compounds, which bind with high affinity to membranes isolated from the free-living nematode Caenorhabditis elegans. Binding of avermectins is thought to modulate chloride channel activity, but the exact mechanism for anthelmintic activity remains to be determined. In this report, the properties of an avermectin-sensitive membrane current were evaluated in Xenopus laevis oocytes that were injected with poly(A)+ RNA from C. elegans. In such oocytes, avermectins increased inward membrane current at a holding potential of -80 mV. An avermectin analog without anthelmintic activity had no effect. Half-maximal activation of current was observed with 90 nM avermectin. The reversal potential for avermectin-sensitive current was -19.3 +/- 1.9 mV, and it shifted with external chloride, as expected for a chloride current. Avermectin increased membrane current in C. elegans-injected oocytes that were also injected with the Ca2+ chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The response to avermectin was greatest in the 1.0-2.5-kilobase class of size-fractionated C. elegans poly(A)+ RNA. Oocytes that responded to avermectin were insensitive to gamma-aminobutyric acid and the avermectin-induced current was blocked by picrotoxin.
-
[
J Parasitol,
1995]
Xenopus laevis oocytes were injected with mRNA isolated from the free-living nematode Caenorhabditis elegans and the activation and potentiation of a glutamate-sensitive chloride current by a series of avermectin analogs and milbemycin D were determined. There was a strong correlation between the EC(50) value determined for current activation in oocytes, the LD(95) value for nematocidal activity, and also for the K-i value determined in a [H-3]ivermectin competition binding assay. Four of the analogs were tested for potentiation of glutamate-sensitive current and the rank order for potentiation correlated with the EC(50) for direct activation of current. We conclude that avermectins and milbemycins mediate their nematocidal effects on C. elegans via an interaction with a common receptor molecule, glutamate-gated chloride channels.
-
[
Development,
2022]
Chloride intracellular channels (CLICs) are conserved proteins whose cellular and molecular functions remain mysterious. An important insight into CLIC function came from the discovery that C. elegans EXC-4/CLIC regulates morphogenesis of the excretory canal (ExCa) cell, a single-cell tube. Subsequent work showed that mammalian CLICs regulate vascular development and angiogenesis, and human CLIC1 can rescue
exc-4 mutants, suggesting conserved function in biological tube formation (tubulogenesis) and maintenance. However, the cell behaviors and signaling pathways regulated by EXC-4/CLICs during tubulogenesis in vivo remain largely unknown. We report a new
exc-4 mutation, affecting a C-terminal residue conserved in virtually all metazoan CLICs, that revealed a specific role for EXC-4/CLIC in ExCa outgrowth. Cell culture studies suggest a function for CLICs in heterotrimeric G-protein (Ga/b/g)-Rho/Rac signaling, and Rho-family GTPases are common regulators of cell outgrowth. Using our new
exc-4 mutant we describe a previously unknown function for Ga-encoding genes (
gpa-12/Ga12/13,
gpa-7/Gai,
egl-30/Gaq, and
gsa-1/Gas),
ced-10/Rac, and
mig-2/RhoG in EXC-4-mediated ExCa outgrowth. Our results demonstrate that EXC-4/CLICs are primordial players in Ga-Rho/Rac-signaling-a pathway critical for tubulogenesis in C. elegans and in vascular development.
-
[
Int J Bioprint,
2022]
Caenorhabditis elegans nematode is a well-established model organism in numerous fields of experimental biology. In nature, C. elegans live in a rich three-dimensional (3D) environment. However, their behavior has been assessed almost exclusively on the open, flat surface of nematode growth medium (NGM) plates, the golden standard for C. elegans culture in the laboratory. We present two methods to build 3D behavioral arenas for C. elegans, by casting and by directly 3D-printing NGM hydrogel. The latter is achieved using a highly customized fused deposition modeling (FDM) 3D printer, modified to employ NGM hydrogel as ink. The result is the advancement of 3D complexity of behavioral assays. To demonstrate the potential of our method, we use the 3D-printed arenas to assess C. elegans physical barriers crossing. C. elegans decision to cross physical obstacles is affected by aging, physiological status (i.e., starvation), and prior experience. The 3D-printed structures can be used to spatially confine C. elegans behaviors, that is, egg laying. We consider these findings a decisive step toward characterizing C. elegans 3D behavior, an area long overlooked due to technical constrains. We envision our method of 3D-printing NGM arenas as a powerful tool in behavioral neurogenetics, neuroethology, and invertebrate model organisms' neurobiology.
-
[
Brain Res Mol Brain Res,
1992]
Membrane currents were recorded from Xenopus laevis oocytes injected with C. elegans poly(A)+ RNA. In such oocytes glutamate activated an inward membrane current that desensitized in the continued presence of glutamate. Glutamate-receptor agonists quisqualate, kainate, and N-methyl-D-aspartate were inactive. The reversal potential of the glutamate-sensitive current was -22 mV, and exhibited a strong dependence on external chloride with a 48 mV change for a 10-fold change in chloride. The chloride channel blockers flufenamate and picrotoxin inhibited the glutamate-sensitive current. Ibotenate, a structural analog of glutamate, also activated a picrotoxin-sensitive chloride current. Ibotenate was inactive when current was partially desensitized with glutamate, and the responses to low concentrations of glutamate and ibotenate were additive. The anthelmintic/insecticide compound avermectin directly activated the glutamate-sensitive current. In addition, avermectin increased the response to submaximal concentrations of glutamate, shifted the glutamate concentration-response curve to lower concentrations, and slowed the desensitization of glutamate-sensitive current. We propose that the glutamate-sensitive chloride current and the avermectin-sensitive chloride current are mediated via the same channel.
-
[
PLoS One,
2019]
An organism's ability to mount a physiological response to external stressors is fundamental to its interaction with the environment. Experimental exploration of these interactions benefits greatly from the ability to maintain tight control of the environment, even under conditions in which it would be normal for the subject to flee the stressor. Here we present a nematode research platform that pairs automated image acquisition and analysis with a custom microfluidic device. This platform enables tight environmental control in low-density, single-worm arenas, which preclude animal escape while still allowing a broad range of behavioral activities. The platform is easily scalable, with two 50 arena arrays per chip and an imaging capacity of 600 animals per scanning device. Validating the device using dietary, osmotic, and oxidative stress indicates that it should be of broad use as a research platform, including eventual adaptation for additional stressors, anthelmintic-drug screening, and toxicology studies.
-
[
Sci Rep,
2020]
In this study, we report a microfluidic device for the whole-life culture of the nematode Caenorhabditis elegans that allows the scoring of animal survival and health measures. This device referred to as the NemaLife chip features: (1) an optimized micropillar arena in which animals can crawl, (2) sieve channels that separate progeny and prevent the loss of adults from the arena during culture maintenance, and (3) ports that allow rapid accessibility for feeding the adult-only population and introducing reagents as needed. The pillar arena geometry was optimized to accommodate the growing body size during culture and emulate the body gait and locomotion of animals reared on agar. Likewise, feeding protocols were optimized to recapitulate longevity outcomes typical of standard plate growth. Key benefits of the NemaLife Chip include eliminating the need to perform repeated manual transfers of adults during survival assays, negating the need for progeny-blocking chemical interventions, and avoiding the swim-induced stress across lifespan in animals reared in liquid. We also show that the culture of animals in pillar-less microfluidic chambers reduces lifespan and introduces physiological stress by increasing the occurrence of age-related vulval integrity disorder. We validated our pillar-based device with longevity analyses of classical aging mutants (
daf-2,
age-1,
eat-2, and
daf-16) and animals subjected to RNAi knockdown of age-related genes (
age-1 and
daf-16). We also showed that healthspan measures such as pharyngeal pumping and tap-induced stimulated reversals can be scored across the lifespan in the NemaLife chip. Overall, the capacity to generate reliable lifespan and physiological data underscores the potential of the NemaLife chip to accelerate healthspan and lifespan investigations in C. elegans.
-
[
J Neurosci Methods,
2014]
BACKGROUND: While many studies have assayed behavioral responses of animals to chemical, temperature and light gradients, fewer studies have assayed how animals respond to humidity gradients. Our novel humidity chamber has allowed us to study the neuromolecular basis of humidity sensation in the nematode Caenorhabditis elegans (Russell et al., 2014). NEW METHOD: We describe an easy-to-construct, low-cost humidity chamber to assay the behavior of small animals, including soft-bodied invertebrates, in controlled humidity gradients. RESULTS: We show that our humidity-chamber design is amenable to soft-bodied invertebrates and can produce reliable gradients ranging 0.3-8% RH/cm across a 9-cm long x 7.5-cm wide gel-covered arena. COMPARISON WITH EXISTING METHOD(S): Previous humidity chambers relied on circulating dry and moist air to produce a steep humidity gradient in a small arena (e.g. Sayeed and Benzer, 1996). To remove the confound of moving air that may elicit mechanical responses independent of humidity responses, our chamber controlled the humidity gradient using reservoirs of hygroscopic materials. Additionally, to better observe the behavioral mechanisms for humidity responses, our chamber provided a larger arena. Although similar chambers have been described previously, these approaches were not suitable for soft-bodied invertebrates or for easy imaging of behavior because they required that animals move across wire or fabric mesh. CONCLUSION: The general applicability of our humidity chamber overcomes limitations of previous designs and opens the door to observe the behavioral responses of soft-bodied invertebrates, including genetically powerful C. elegans and Drosophila larvae.
-
[
Elife,
2023]
Olfactory navigation is observed across species and plays a crucial role in locating resources for survival. In the laboratory, understanding the behavioral strategies and neural circuits underlying odor-taxis requires a detailed understanding of the animal's sensory environment. For small model organisms like C. elegans and larval D. melanogaster, controlling and measuring the odor environment experienced by the animal can be challenging, especially for airborne odors, which are subject to subtle effects from airflow, temperature variation, and from the odor's adhesion, adsorption or reemission. Here we present a method to control and measure airborne odor concentration in an arena compatible with an agar substrate. Our method allows continuous controlling and monitoring of the odor profile while imaging animal behavior. We construct stationary chemical landscapes in an odor flow chamber through spatially patterned odorized air. The odor concentration is measured with a spatially distributed array of digital gas sensors. Careful placement of the sensors allows the odor concentration across the arena to be continuously inferred in space and monitored through time. We use this approach to measure the odor concentration that each animal experiences as it undergoes chemotaxis behavior and report chemotaxis strategies for C. elegans and D. melanogaster larvae populations as they navigate spatial odor landscapes.
-
[
MicroPubl Biol,
2020]
Aggregates of the protein tau are the hallmark of several neurodegenerative diseases including Alzheimers disease, frontotemporal lobar degeneration (FTLD-tau), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Picks disease, and chronic traumatic encephalopathy (CTE) (VandeVrede, Boxer et al. 2020). Mutations in the gene coding for tau, MAPT, can cause FTLD-tau, directly linking tau dysfunction with disease (Dickson, Kouri et al. 2011). Another protein, TDP-43, comprises aggregates which are the primary hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), and mutations in the gene coding for TDP-43, TARDBP, can cause disease (Kawakami, Arai et al. 2019). To model tau or TDP-43 proteinopathies, transgenic C. elegans have been generated that express the full-length human protein pan-neuronally. These worms exhibit significant uncoordinated movement on plates and impaired thrashing in liquid (Kraemer, Zhang et al. 2003; Liachko, Guthrie et al. 2010). However, tau- and TDP-43- expressing worms are not paralyzed; they still move their heads and have some motility on the plate (coiling, crawling with tail-drag, head swinging) which are not captured in standard crawling or thrashing assays. To assay differences in total activity, we used a WMicroTracker ARENA System (Phylumtech, AR and InVivo Biosystems, USA). The ARENA captures population level activity data by relying on optical interferometry, which uses a large array of infrared LED microbeams to detect both the movement and position of worms on a culture plate. Disruption of an LED microbeam by worm movement is recorded by repeat scans of the 6-well culture plate, and allows for real-time processing. The software identifies changes in the location of disrupted beams between scans and assigns an activity score based on differences identified between each consecutive scan (Simonetta SH). Both tau- and TDP-43- expressing worms had significantly less activity per minute than N2 (Figure 1). Further, we found the ARENA- assessed activity data recapitulated the relative severity of phenotypes among the strains as measured by motility assays. For example, both CK10 (tau V337M) and CK144 (tau WT) have significantly uncoordinated movement when crawling or thrashing in liquid, with CK144 having worse motility than CK10, due to its much higher burden of total tau protein expressed (Kraemer, Zhang et al. 2003). Likewise, CK410 (TDP-43 WT) worms have slightly impaired motility compared with N2 when crawling on a plate, CK423 (TDP-43 M337V) are severely uncoordinated, and CK426 (TDP-43 A315T) have the most severe uncoordinated phenotype. The relative toxicities of these strains stem from the effects of the mutations, as TDP-43 protein expression is relatively even among these transgenic strains (Liachko, Guthrie et al. 2010). Interestingly, the ARENA captures activity of these severely uncoordinated worms that move poorly in motility assays such as crawling on an NGM plate or thrashing in liquid (Kraemer, Zhang et al. 2003; Liachko, Guthrie et al. 2010). Therefore, ARENA assessment of aggregate activity may be a more accurate metric for capturing non-locomotor movement of C. elegans that are severely uncoordinated.