-
[
2007]
TRP ion channels were first described in Drosophila melanogaster in 1989 and in mammals several years later. In 1997, TRPV1, a member of the TRP channel superfamily (now with more than 60 members in vertebrates and invertebrates but not in bacteria and plants), was described to respond to the pungent ingredients of hot pepper, then named capsaicin receptor. Ever since we have witnessed an explosion of activity in this field of scientific inquiry for obvious reasons. TRP ion channels are critical elements in signal transduction of cellular signaling cascades and of neurosensory processes, which are involved in all five senses. This book, TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades presents 31 chapters written by researchers who have made these key discoveries, such as Dr. Lutz Birnbaumer who discovered mammalian TRP channels, and who continues to conduct TRP ion channel research at the cutting edge of this hyperdynamic area. Because of the burgeoning nature of the field, this book does not represent an all-comprehensive view on TRP channel biology. However, it does shed light on selected topics of outstanding interest in the TRP arena, such as signal transduction in axonal pathfinding, and vascular, renal, auditory, and nociceptive functioning, to name a few, and the spotlight is cast by an international cast of outstanding chapter authors.
-
[
1997]
The urgency and importance of properly conducting a risk assessment, and all the various attributes of the assessment, will remain a significant issue for years to come. STP 1317 explores the use of modeling in developing risk assessments for a variety of environmental situations, including human-health assessments, site-specific assessments, and ecosystem-level assessments. 32 peer-reviewed papers examine several aspects to consider when conducting a risk assessment, including: When is Risk Assessment the Right Tool?, Communication of Risk Assessment, Model Selection and Problem Analysis, Data Quality and Uncertainty
-
[
1997]
This book is part of an on-going series presenting collections of original research papers and literature reviews on diverse topics in molecular and cellular biology. This volume houses 34 literature reviews and research summaries on various aspects of the biology of Caenorhabditis elegans, a nematode of extraordinary usefulness as a research model. Topics include: the genome, mutation, transcription and its regulation, sex determination, male development, nervous system patterning, feeding and defecation, neural plasticity, and evolution. Appendices house a list of characterized genes, on-line resources, and other information. The text is illustrated, indexed, and includes a common bibliography of over 2000 literature citations.
-
[
2003]
This is the story of how three men won the Nobel Prize for their research on the humble nematode worm C. elegans; how their extraordinary discovery led to the sequencing of the human genome; how a global multibillion-dollar industry was born; and how the mysteries of life were revealed in a tiny, brainless worm.
-
[
2005]
The rapidly growing cache of knowledge, which has to a considerable extent been generated by the authors themselves, has not only provided us with new, detailed insights into the function of mechanosensitivity in diverse tissues and organs, but has also displayed the potential therapeutic possibilities that arise from this understanding.
-
[
2006]
For the first time world-leading experts in the area of cellular signaling have joined to the production of a book on Smad signal transduction. Smads are the principal intracellular effectors of TGF-b family members that control numerous cellular responses with critical roles in development and in tissue homeostasis. In a series of 22 cutting-edge chapters forward looking reviews of Smads are provided that cover their discovery, evolution, role in development, mechanism of action and regulation, and how deregulation in Smad signalling contributes to human diseases. Written for an audience with basic understanding of molecular and cell biology, this volume provides an in-depth review of a rapidly developing field and extensive cross-references between chapters are provided. This book will be of particular interest to basic and applied biomedical researchers (students, post-docs or group leaders) with desire to understand the principles of cell-cell communication and mechanisms by which signaling pathways and gene programs control cell proliferation and differentiation, and how this knowledge may come to be applied in the clinic.
-
[
2010]
The common belief is that human smell perception is much reduced compare to other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely overly simplistic. The Neurobiology of Olfaction provides a thorough analysis of the state-of-the-science in olfactory knowledge and research, reflecting the growing interest in the field. Authors from some of the most respected laboratories in the world explore various aspects of olfaction, including genetics, behavior, olfactory systems, odorant receptors, odor coding, and cortical activity. Until recently, almost all animal research in olfaction was carried out on orthonasal olfaction (inhalation). It is only in recent years, especially in human flavor research, that evidence has begun to be obtained regarding the importance of retronasal olfaction (exhalation). These studies are beginning to demonstrate that retronasal smell plays a large role in human behavior. Highlighting common principles among various species-including humans, insects, Xenopus laevis (African frog), and Caenorhabditis elegans (nematodes)-this highly interdisciplinary book contains chapters about the most recent discoveries in odor coding from the olfactory epithelium to cortical centers. It also covers neurogenesis in the olfactory epithelium and olfactory bulb. Each subject-specific chapter is written by a top researcher in the field and provides an extensive list of reviews and original articles for students and scientists interested in further readings.
-
StemBook is an open access collection of invited, original, peer-reviewed chapters covering a range of topics related to stem cell biology written by top researchers in the field at the Harvard Stem Cell Institute and worldwide. StemBook is aimed at stem cell and non-specialist researchers. In addition to the contributions of the editorial board and the stem cell research community, the project is being done in collaboration with several other enterprises including Harvards Initiative in Innovative Computing. The Initiative in Innovative Computing created the Scientific Collaboration Framework (SCF), the extensible software infrastructure used for the project. SCF and the StemBook project were funded, in part, by a generous grant from an anonymous foundation and also appreciates the input of WormBase's Textpresso team.
-
[
2017]
During the last two decades, there has been an explosion of research pertaining to the molecular mechanisms that allow for organisms to detect different stimuli, an essential feature for their survival. Among these mechanisms, living beings need to be able to respond to different temperatures as well as chemical and physical stimuli.Thermally activated ion channels were proposed to be present in sensory neurons in the 1980s, but it was not until 1997 that a heat- and capsaicin- activated ion channel, TRPV1, was cloned and its function described in detail. This groundbreaking discovery led to the identification and characterization of several more proteins of the family of Transient Receptor Potential (TRP) ion channels.Intensive research has provided us with the atomic structures of some of these proteins, as well as understanding of their physiological roles, both in normal and pathological conditions. With chapters contributed by renowned experts in the field, Neurobiology of TRP Channels contains a state-of-the-art overview of our knowledge of TRP channels, ranging from structure to their functions in organismal physiology.
-
[
2011]
The rapid expansion of the TRP field has generated a large amount of excellent original work across many different research fields. However, investigators are not necessarily familiar with the pros and cons of the variety of methods used to study TRP channels. Because of functional and genetic diversity, as well as the different physiological roles they play, techniques used for studying TRP channels range from single molecular analysis to behavioral animal studies. Methods in multiple areas, such as molecular biology, fluorescence imaging, electrophysiology, cell biology, genetics, proteomics, pharmacology, system physiology, and behavioral assessment, are employed to investigate various aspects of these channels. Choosing among many possible topics in these broad areas was a daunting task. A comprehensive review of the field, TRP Channels spans the information gap by providing broad coverage of current methods and techniques commonly used in TRP channel research, and detailed protocols with thorough discussions of the advantages and disadvantages across methods. Some topics covered include 1. Mammalian, Drosophila and C. elegans TRP channels. 2. Practical protocols for functional studies of TRP channels, including TRPC, TRPV, TRPA, TRPM and the intracellularly localized TRPML channels. 3. ThermoTRPs, including the new fast temperature jump apparatus and the high throughput random mutagenesis method for screening critical motifs involved in TRP channel regulation. 4. Cell-based high-throughput screening assays for TRP channels and their applications in drug discoveries. 5. TRP channel functions in native cells, including smooth muscles, neurons, and cancers. Showcasing the current status of the field, TRP Channels covers the major techniques used in various areas of research. The majority of the chapters are protocol oriented, with the goal of providing clear directions for laboratory use. Because of the breadth of the TRP field, the applications of some methods are described in multiple chapters by experts working on a variety of channel types that serve different physiological functions, highlighting distinctive views on how the methodology can be utilized. Some chapters include discussion on the usefulness and pitfalls associated with the use of certain techniques. Together with chapters that offer comprehensive reviews on the functional regulation and other roles of TRP channels, students and investigators new to the field should find this book particularly informative.