-
[
Mol Pharmacol,
1991]
Avermectins are a family of potent broad-spectrum anthelmintic compounds, which bind with high affinity to membranes isolated from the free-living nematode Caenorhabditis elegans. Binding of avermectins is thought to modulate chloride channel activity, but the exact mechanism for anthelmintic activity remains to be determined. In this report, the properties of an avermectin-sensitive membrane current were evaluated in Xenopus laevis oocytes that were injected with poly(A)+ RNA from C. elegans. In such oocytes, avermectins increased inward membrane current at a holding potential of -80 mV. An avermectin analog without anthelmintic activity had no effect. Half-maximal activation of current was observed with 90 nM avermectin. The reversal potential for avermectin-sensitive current was -19.3 +/- 1.9 mV, and it shifted with external chloride, as expected for a chloride current. Avermectin increased membrane current in C. elegans-injected oocytes that were also injected with the Ca2+ chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The response to avermectin was greatest in the 1.0-2.5-kilobase class of size-fractionated C. elegans poly(A)+ RNA. Oocytes that responded to avermectin were insensitive to gamma-aminobutyric acid and the avermectin-induced current was blocked by picrotoxin.
-
[
J Parasitol,
1995]
Xenopus laevis oocytes were injected with mRNA isolated from the free-living nematode Caenorhabditis elegans and the activation and potentiation of a glutamate-sensitive chloride current by a series of avermectin analogs and milbemycin D were determined. There was a strong correlation between the EC(50) value determined for current activation in oocytes, the LD(95) value for nematocidal activity, and also for the K-i value determined in a [H-3]ivermectin competition binding assay. Four of the analogs were tested for potentiation of glutamate-sensitive current and the rank order for potentiation correlated with the EC(50) for direct activation of current. We conclude that avermectins and milbemycins mediate their nematocidal effects on C. elegans via an interaction with a common receptor molecule, glutamate-gated chloride channels.
-
[
Brain Res Mol Brain Res,
1992]
Membrane currents were recorded from Xenopus laevis oocytes injected with C. elegans poly(A)+ RNA. In such oocytes glutamate activated an inward membrane current that desensitized in the continued presence of glutamate. Glutamate-receptor agonists quisqualate, kainate, and N-methyl-D-aspartate were inactive. The reversal potential of the glutamate-sensitive current was -22 mV, and exhibited a strong dependence on external chloride with a 48 mV change for a 10-fold change in chloride. The chloride channel blockers flufenamate and picrotoxin inhibited the glutamate-sensitive current. Ibotenate, a structural analog of glutamate, also activated a picrotoxin-sensitive chloride current. Ibotenate was inactive when current was partially desensitized with glutamate, and the responses to low concentrations of glutamate and ibotenate were additive. The anthelmintic/insecticide compound avermectin directly activated the glutamate-sensitive current. In addition, avermectin increased the response to submaximal concentrations of glutamate, shifted the glutamate concentration-response curve to lower concentrations, and slowed the desensitization of glutamate-sensitive current. We propose that the glutamate-sensitive chloride current and the avermectin-sensitive chloride current are mediated via the same channel.
-
[
Biochem Biophys Res Commun,
2001]
Junctional complexes between the plasma membrane and endoplasmic/sareoplasmic reticulum are shared by excitable cells and seem to be the structural ground for cross-talk between cell-surface and intracellular ionic channels. Our current studies have identified junctophilins (JPs) as members of a novel transmembrane protein family in the junctional membrane complex. Biochemical and gene-knockout studies have suggested that JPs contribute to the formation of the junctional membrane complex by spanning the intracellular store membrane and interacting with the plasma membrane. We report here invertebrate JPs in fruit fly and nematode. Three distinct JP subtype genes are found in the mammalian genome, while a single JP gene exists in either invertebrate genome. Mammalian and invertebrate JPs share characteristic structural features, although some intervening sequences are found in invertebrate JPs. A reporter assay indicated that the JP gene is predominantly activated in muscle cells in nematode. Nematodes, in which expression of JP was inhibited by RNA-mediated interference (RNAi), showed hypolocomotion. Taking account of the cell-type-specific expression and data from previous reports, the hypolocomotion is likely to be due to the deficiency of junctional membrane structures and the resulting reduction of Ca2+ signaling during excitation-contraction coupling in muscle cells.
-
[
J Biol Chem,
1996]
Many of the subunits of ligand-gated ion channels respond poorly, if at all, when expressed as homomeric channels in Xenopus oocytes. This lack of a ligand response has been thought to result from poor surface expression, poor assembly, or lack of an agonist binding domain. The Caenorhabditis elegans glutamate-gated chloride channel subunit GluClbeta responds to glutamate as a homomeric channel while the GluClalpha subunit is insensitive. A chimera between GluClalpha and GluClbeta was used to suggest that major determinants for glutamate binding are present on the GluClalpha N terminus. Amino acid substitutions in the presumed pore of GluClalpha conferred direct glutamate gating indicating that GluClalpha is deficient in coupling of ligand binding to channel gating. Heteromeric channels of GluClalpha+beta may differ from the prototypic muscle nicotinic acetylcholine receptor in that they have the potential to bind ligand to all of the subunits forming the channel.
-
[
J Neurosci Methods,
2014]
BACKGROUND: While many studies have assayed behavioral responses of animals to chemical, temperature and light gradients, fewer studies have assayed how animals respond to humidity gradients. Our novel humidity chamber has allowed us to study the neuromolecular basis of humidity sensation in the nematode Caenorhabditis elegans (Russell et al., 2014). NEW METHOD: We describe an easy-to-construct, low-cost humidity chamber to assay the behavior of small animals, including soft-bodied invertebrates, in controlled humidity gradients. RESULTS: We show that our humidity-chamber design is amenable to soft-bodied invertebrates and can produce reliable gradients ranging 0.3-8% RH/cm across a 9-cm long x 7.5-cm wide gel-covered arena. COMPARISON WITH EXISTING METHOD(S): Previous humidity chambers relied on circulating dry and moist air to produce a steep humidity gradient in a small arena (e.g. Sayeed and Benzer, 1996). To remove the confound of moving air that may elicit mechanical responses independent of humidity responses, our chamber controlled the humidity gradient using reservoirs of hygroscopic materials. Additionally, to better observe the behavioral mechanisms for humidity responses, our chamber provided a larger arena. Although similar chambers have been described previously, these approaches were not suitable for soft-bodied invertebrates or for easy imaging of behavior because they required that animals move across wire or fabric mesh. CONCLUSION: The general applicability of our humidity chamber overcomes limitations of previous designs and opens the door to observe the behavioral responses of soft-bodied invertebrates, including genetically powerful C. elegans and Drosophila larvae.
-
[
Sci Rep,
2020]
In this study, we report a microfluidic device for the whole-life culture of the nematode Caenorhabditis elegans that allows the scoring of animal survival and health measures. This device referred to as the NemaLife chip features: (1) an optimized micropillar arena in which animals can crawl, (2) sieve channels that separate progeny and prevent the loss of adults from the arena during culture maintenance, and (3) ports that allow rapid accessibility for feeding the adult-only population and introducing reagents as needed. The pillar arena geometry was optimized to accommodate the growing body size during culture and emulate the body gait and locomotion of animals reared on agar. Likewise, feeding protocols were optimized to recapitulate longevity outcomes typical of standard plate growth. Key benefits of the NemaLife Chip include eliminating the need to perform repeated manual transfers of adults during survival assays, negating the need for progeny-blocking chemical interventions, and avoiding the swim-induced stress across lifespan in animals reared in liquid. We also show that the culture of animals in pillar-less microfluidic chambers reduces lifespan and introduces physiological stress by increasing the occurrence of age-related vulval integrity disorder. We validated our pillar-based device with longevity analyses of classical aging mutants (
daf-2,
age-1,
eat-2, and
daf-16) and animals subjected to RNAi knockdown of age-related genes (
age-1 and
daf-16). We also showed that healthspan measures such as pharyngeal pumping and tap-induced stimulated reversals can be scored across the lifespan in the NemaLife chip. Overall, the capacity to generate reliable lifespan and physiological data underscores the potential of the NemaLife chip to accelerate healthspan and lifespan investigations in C. elegans.
-
[
MicroPubl Biol,
2020]
Aggregates of the protein tau are the hallmark of several neurodegenerative diseases including Alzheimers disease, frontotemporal lobar degeneration (FTLD-tau), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Picks disease, and chronic traumatic encephalopathy (CTE) (VandeVrede, Boxer et al. 2020). Mutations in the gene coding for tau, MAPT, can cause FTLD-tau, directly linking tau dysfunction with disease (Dickson, Kouri et al. 2011). Another protein, TDP-43, comprises aggregates which are the primary hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), and mutations in the gene coding for TDP-43, TARDBP, can cause disease (Kawakami, Arai et al. 2019). To model tau or TDP-43 proteinopathies, transgenic C. elegans have been generated that express the full-length human protein pan-neuronally. These worms exhibit significant uncoordinated movement on plates and impaired thrashing in liquid (Kraemer, Zhang et al. 2003; Liachko, Guthrie et al. 2010). However, tau- and TDP-43- expressing worms are not paralyzed; they still move their heads and have some motility on the plate (coiling, crawling with tail-drag, head swinging) which are not captured in standard crawling or thrashing assays. To assay differences in total activity, we used a WMicroTracker ARENA System (Phylumtech, AR and InVivo Biosystems, USA). The ARENA captures population level activity data by relying on optical interferometry, which uses a large array of infrared LED microbeams to detect both the movement and position of worms on a culture plate. Disruption of an LED microbeam by worm movement is recorded by repeat scans of the 6-well culture plate, and allows for real-time processing. The software identifies changes in the location of disrupted beams between scans and assigns an activity score based on differences identified between each consecutive scan (Simonetta SH). Both tau- and TDP-43- expressing worms had significantly less activity per minute than N2 (Figure 1). Further, we found the ARENA- assessed activity data recapitulated the relative severity of phenotypes among the strains as measured by motility assays. For example, both CK10 (tau V337M) and CK144 (tau WT) have significantly uncoordinated movement when crawling or thrashing in liquid, with CK144 having worse motility than CK10, due to its much higher burden of total tau protein expressed (Kraemer, Zhang et al. 2003). Likewise, CK410 (TDP-43 WT) worms have slightly impaired motility compared with N2 when crawling on a plate, CK423 (TDP-43 M337V) are severely uncoordinated, and CK426 (TDP-43 A315T) have the most severe uncoordinated phenotype. The relative toxicities of these strains stem from the effects of the mutations, as TDP-43 protein expression is relatively even among these transgenic strains (Liachko, Guthrie et al. 2010). Interestingly, the ARENA captures activity of these severely uncoordinated worms that move poorly in motility assays such as crawling on an NGM plate or thrashing in liquid (Kraemer, Zhang et al. 2003; Liachko, Guthrie et al. 2010). Therefore, ARENA assessment of aggregate activity may be a more accurate metric for capturing non-locomotor movement of C. elegans that are severely uncoordinated.
-
[
Elife,
2023]
Olfactory navigation is observed across species and plays a crucial role in locating resources for survival. In the laboratory, understanding the behavioral strategies and neural circuits underlying odor-taxis requires a detailed understanding of the animal's sensory environment. For small model organisms like C. elegans and larval D. melanogaster, controlling and measuring the odor environment experienced by the animal can be challenging, especially for airborne odors, which are subject to subtle effects from airflow, temperature variation, and from the odor's adhesion, adsorption or reemission. Here we present a method to control and measure airborne odor concentration in an arena compatible with an agar substrate. Our method allows continuous controlling and monitoring of the odor profile while imaging animal behavior. We construct stationary chemical landscapes in an odor flow chamber through spatially patterned odorized air. The odor concentration is measured with a spatially distributed array of digital gas sensors. Careful placement of the sensors allows the odor concentration across the arena to be continuously inferred in space and monitored through time. We use this approach to measure the odor concentration that each animal experiences as it undergoes chemotaxis behavior and report chemotaxis strategies for C. elegans and D. melanogaster larvae populations as they navigate spatial odor landscapes.
-
[
J Neurochem,
1999]
Glutamate-gated chloride channels have been described in nematodes, insects, crustaceans, and mollusks. Subunits from the nematode and insect channels have been cloned and are phylogenetically related to the GABA and glycine ligand-gated chloride channels. Ligand-gated chloride channels are blocked with variable potency by the nonselective blocker picrotoxin. The first two subunits of the glutamate-gated chloride channel family, GluClalpha and GluClbeta, were cloned from the free living nematode Caenorhabditis elegans. In this study, we analyze the blockade of these novel channels by picrotoxin. In vitro synthesized GluClalpha and GluClbeta RNAs were injected individually or coinjected into Xenopus oocytes. The EC50 values for picrotoxin block of homomeric GluClalpha and GluClbeta were 59 microM and 77 nM, respectively. Picrotoxin block of homomeric GluClbeta channels was promoted during activation of membrane current with glutamate. In addition, recovery from picrotoxin block was faster during current activation by glutamate. A chimeric channel between the N-terminal extracellular domain of GluClalpha and the C-terminal membrane-spanning domain of GluClbeta localized the higher affinity picrotoxin binding site to the membrane-spanning domains of GluClbeta. A point mutation within the M2 membrane-spanning domain of GluClbeta reduced picrotoxin sensitivity >10,000-fold. We conclude that picrotoxin blocks GluCl channels by binding to a site accessible when the channel is open.