-
[
Mol Pharmacol,
1991]
Avermectins are a family of potent broad-spectrum anthelmintic compounds, which bind with high affinity to membranes isolated from the free-living nematode Caenorhabditis elegans. Binding of avermectins is thought to modulate chloride channel activity, but the exact mechanism for anthelmintic activity remains to be determined. In this report, the properties of an avermectin-sensitive membrane current were evaluated in Xenopus laevis oocytes that were injected with poly(A)+ RNA from C. elegans. In such oocytes, avermectins increased inward membrane current at a holding potential of -80 mV. An avermectin analog without anthelmintic activity had no effect. Half-maximal activation of current was observed with 90 nM avermectin. The reversal potential for avermectin-sensitive current was -19.3 +/- 1.9 mV, and it shifted with external chloride, as expected for a chloride current. Avermectin increased membrane current in C. elegans-injected oocytes that were also injected with the Ca2+ chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The response to avermectin was greatest in the 1.0-2.5-kilobase class of size-fractionated C. elegans poly(A)+ RNA. Oocytes that responded to avermectin were insensitive to gamma-aminobutyric acid and the avermectin-induced current was blocked by picrotoxin.
-
[
Parasitol Today,
1994]
It has recently been shown that Xenopus oocytes injected with mRNA from the free-living nematode Caenorhabditis elegans express avermectin-sensitive chloride channels(1). Joseph Arena here reviews whet is known about the mechanism of action of avermectin and how these recent results relate to the mechanism in nematodes.
-
[
J Parasitol,
1995]
Xenopus laevis oocytes were injected with mRNA isolated from the free-living nematode Caenorhabditis elegans and the activation and potentiation of a glutamate-sensitive chloride current by a series of avermectin analogs and milbemycin D were determined. There was a strong correlation between the EC(50) value determined for current activation in oocytes, the LD(95) value for nematocidal activity, and also for the K-i value determined in a [H-3]ivermectin competition binding assay. Four of the analogs were tested for potentiation of glutamate-sensitive current and the rank order for potentiation correlated with the EC(50) for direct activation of current. We conclude that avermectins and milbemycins mediate their nematocidal effects on C. elegans via an interaction with a common receptor molecule, glutamate-gated chloride channels.
-
[
Brain Res Mol Brain Res,
1992]
Membrane currents were recorded from Xenopus laevis oocytes injected with C. elegans poly(A)+ RNA. In such oocytes glutamate activated an inward membrane current that desensitized in the continued presence of glutamate. Glutamate-receptor agonists quisqualate, kainate, and N-methyl-D-aspartate were inactive. The reversal potential of the glutamate-sensitive current was -22 mV, and exhibited a strong dependence on external chloride with a 48 mV change for a 10-fold change in chloride. The chloride channel blockers flufenamate and picrotoxin inhibited the glutamate-sensitive current. Ibotenate, a structural analog of glutamate, also activated a picrotoxin-sensitive chloride current. Ibotenate was inactive when current was partially desensitized with glutamate, and the responses to low concentrations of glutamate and ibotenate were additive. The anthelmintic/insecticide compound avermectin directly activated the glutamate-sensitive current. In addition, avermectin increased the response to submaximal concentrations of glutamate, shifted the glutamate concentration-response curve to lower concentrations, and slowed the desensitization of glutamate-sensitive current. We propose that the glutamate-sensitive chloride current and the avermectin-sensitive chloride current are mediated via the same channel.
-
[
International Worm Meeting,
2003]
Autosomal recessive juvenile parkinsonism (AR-JP) is one of the most common forms of familial parkinsons disease characterized by selective loss of dopaminergic neurons in substantia nigra and the locus coeruleus. parkin is the causative gene of AR-JP. The human parkin gene encodes 465 amino acids with a ubiquitin-like domain in the amino-terminus and two RING finger motifs in the carboxy terminus. So far, various deletion mutations and point mutations have been discovered in patients of AR-JP, suggesting that the loss of function of Parkin is the cause of AR-JP. Recently we and others showed that Parkin has a ubiquitin-protein ligase activity and therefore suggested that the defect of protein degradation in the neurons of AR-JP patients (Shimura H. et al. Nat. Genet. 25, 302-5, 2000). To investigate the function of Parkin in vivo, we began to analyze the Ce-PARKIN of C. elegans. Two deletion mutations in parkin genes show no defect in their viabilities. The expression of Ce-PARKIN seems to be specific to subset of neurons. Therefore, we focused on the function of Ce-PARKIN in the neurons and the analysis is underway.
-
[
Biochem Biophys Res Commun,
2001]
Junctional complexes between the plasma membrane and endoplasmic/sareoplasmic reticulum are shared by excitable cells and seem to be the structural ground for cross-talk between cell-surface and intracellular ionic channels. Our current studies have identified junctophilins (JPs) as members of a novel transmembrane protein family in the junctional membrane complex. Biochemical and gene-knockout studies have suggested that JPs contribute to the formation of the junctional membrane complex by spanning the intracellular store membrane and interacting with the plasma membrane. We report here invertebrate JPs in fruit fly and nematode. Three distinct JP subtype genes are found in the mammalian genome, while a single JP gene exists in either invertebrate genome. Mammalian and invertebrate JPs share characteristic structural features, although some intervening sequences are found in invertebrate JPs. A reporter assay indicated that the JP gene is predominantly activated in muscle cells in nematode. Nematodes, in which expression of JP was inhibited by RNA-mediated interference (RNAi), showed hypolocomotion. Taking account of the cell-type-specific expression and data from previous reports, the hypolocomotion is likely to be due to the deficiency of junctional membrane structures and the resulting reduction of Ca2+ signaling during excitation-contraction coupling in muscle cells.
-
[
International Worm Meeting,
2003]
Ivermectin is a widely used antiparasitic drug. It kills worms by activating glutamate-gated chloride channels (GluCls), which belong to the family of ligand-gated anion channels that includes the GABA and glutamate receptors (Cully et al., 1994; Dent et al., 2000). The chloride permeability that ivermectin induces in excitable cells tends to prevent excitation. For example, ivermectin targets a GluCl expressed in the pharyngeal muscle to inhibit muscle contraction and prevent eating (Dent et al., 1997). The worms linger for several days in the presence of ivermectin before they starve to death. However, we have found that the lethal effects of ivermectin on C. elegans become irreversible after only a few hours of exposure. When L1 worms were exposed to 20ng/ml for 5 hours and then washed, they gradually developed large vacuoles in their pharyngeal muscle over the next several days. A mutant strain that lacks ivermectin receptors shows little or no necrosis when treated. Ivermectin is hydrophobic and it irreversibly opens GluCls expressed in Xenopus oocytes. So it is possible that ivermectin persists in membranes and continues to activate GluCls. Furthermore, it has been shown that hyperactive cation channels can induce excitotoxic necrosis (Driscoll and Chalfie, 1991). Why, though, would an inhibitory channel have a similar effect when hyperactivated? We are trying to address this question by looking at whether mutations known to inhibit excitotoxicity also inhibit the necrotic effects of ivermectin. Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LHT, Schaeffer JM, Arena JP. Nature 371: 707-711 1994 Dent JA, Smith MM, Vassilatis DK, Avery L. PNAS USA 97: 2674-2679 2000 Dent JA, Davis MW, Avery L. EMBO Journal 16: 5867-5879 1997 Driscoll, M and Chalfie, M. Nature 349: 588-593 1991
-
[
International C. elegans Meeting,
1993]
-
Kim J, Park J, Bae E, Shong M, Kim JM, Lee SB, Kim Y, Song S, Lee S, Kim S, Chung J
[
Nature,
2006]
Autosomal recessive juvenile parkinsonism (AR-JP) is an early-onset form of Parkinson''s disease characterized by motor disturbances and dopaminergic neurodegeneration. To address its underlying molecular pathogenesis, we generated and characterized loss-of-function mutants of Drosophila PTEN-induced putative kinase 1 (PINK1), a novel AR-JP-linked gene. Here, we show that PINK1 mutants exhibit indirect flight muscle and dopaminergic neuronal degeneration accompanied by locomotive defects. Furthermore, transmission electron microscopy analysis and a rescue experiment with Drosophila Bcl-2 demonstrated that mitochondrial dysfunction accounts for the degenerative changes in all phenotypes of PINK1 mutants. Notably, we also found that PINK1 mutants share marked phenotypic similarities with parkin mutants. Transgenic expression of Parkin markedly ameliorated all PINK1 loss-of-function phenotypes, but not vice versa, suggesting that Parkin functions downstream of PINK1. Taken together, our genetic evidence clearly establishes that Parkin and PINK1 act in a common pathway in maintaining mitochondrial integrity and function in both muscles and dopaminergic neurons.
-
[
J Biol Chem,
1996]
Many of the subunits of ligand-gated ion channels respond poorly, if at all, when expressed as homomeric channels in Xenopus oocytes. This lack of a ligand response has been thought to result from poor surface expression, poor assembly, or lack of an agonist binding domain. The Caenorhabditis elegans glutamate-gated chloride channel subunit GluClbeta responds to glutamate as a homomeric channel while the GluClalpha subunit is insensitive. A chimera between GluClalpha and GluClbeta was used to suggest that major determinants for glutamate binding are present on the GluClalpha N terminus. Amino acid substitutions in the presumed pore of GluClalpha conferred direct glutamate gating indicating that GluClalpha is deficient in coupling of ligand binding to channel gating. Heteromeric channels of GluClalpha+beta may differ from the prototypic muscle nicotinic acetylcholine receptor in that they have the potential to bind ligand to all of the subunits forming the channel.