[
International Worm Meeting,
2019]
Caenorhabditis elegans typically feeds on rotting fruit and plant material in a fluctuating natural habitat, a boom-and-bust lifestyle. Moreover, stage specific developmental responses to low food concentration suggest that starvation-like conditions are a regular occurrence. In order to assess variation in the C. elegans starvation response under precisely controlled conditions and simultaneously phenotype a large number of individuals with high precision, we have developed a microfluidic device that, when combined with image scanning technology, allows for high-throughput assessment at a temporal resolution not previously feasible and applied this to a large mapping panel of fully sequenced intercross lines. Under these conditions worms exhibit a markedly reduced adult lifespan with strain-dependent variation in starvation response, ranging from <72 hours to ~120 hours. We performed genome-wide mapping and epistatic analysis of the responses of 7,855 individuals spread across 72 mapping lines, identifying a number of different chromosomal regions responsible for this variation. Genetic differences for a subset of lines were confirmed using a multi-generational introgression analysis using backcrossing with selection. Overall, there is a clear genetic basis for natural variation in the response to food availability within this species.
[
International Worm Meeting,
2005]
As exposures to the space environment become longer, information regarding the effects on biological aging will become important. We have not yet fully clarified aging processes in space environments. The aging process and lifespan are affected by various kinds of environmental factors including oxygen concentration (1), temperature and radiation. The aging phenomena that we usually see occur under certain conditions on the ground. Space environments differ from ground environments especially with regard to the radiation spectrum and gravity. We participated in the International C. elegans Experiment(ICE)First that examined the effects of a 10-day space flight on the nematode C. elegans. C. elegans has frequently been used for study of aging because of its short lifespan. Recently, Morley et al. reported that Huntington's-like polyglutamine (polyQ)-repeat proteins expressed in the muscle of C. elegans form aggregates as the animals age, and that this aggregation is delayed in long-lived mutants(2). We measured the polyQ aggregates in these nematodes after space flight as an aging marker. Herndon et al. showed that the sarcomere orientation in the body-wall muscle becomes disorderly as the animals age(3). We also observed the sarcomere orientation in the body-wall muscle of these nematodes after space flight as another aging marker. Acknowledgement: We thank Dr. R. L. Morimoto (Northwestern University) for providing us polyQ-YFP C. elegans strains. We also thank CGC for other strains. ICE-First was mainly conducted by the French Space Agency (CNES), with support of the European Space Agency and the Space Research Organization of the Netherlands. We are grateful to Dr. Michel Viso (CNES), Dr. K. Kuriyama (JAXA) and Dr. A. Higashitani (Tohoku University) for their support and suggestion for our experiment. References: 1) Honda S., Ishii N, Suzuki K, Matsuo M. J Gerontol. 48:B57-61. 1993 2) James F. Morley, Heather R. Brignull, Jill J. Weyers, and Richard I. Morimoto. Proc. Natl. Acad. Sci. USA, 99: 10417-10422. 2002 3) Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M. Nature. 419:808-814. 2002