-
[
WormBook,
2005]
The knowledge about C. elegans provides a paradigm for comparative studies. Nematodes are very attractive in evolutionary developmental biology given the species richness of the phylum and the easiness with which several of these species can be cultured under laboratory conditions. Embryonic, gonad, vulva and male tail development were studied and compared in nematodes of five different families, providing a detailed picture of evolutionary changes in development. In particular, vulva development has been studied in great detail and substantial differences in the cellular, genetic and molecular mechanisms have been observed between C. elegans and other nematodes. For example, vulva induction relies on the single anchor cell in C. elegans, whereas a variety of different cellular mechanisms are used in related species. In recent years, a few species have been developed as satellite systems for detailed genetic and molecular studies, such as Oscheius tipulae and Pristionchus pacificus.
-
[
WormBook,
2005]
Cell-cell interactions mediated by the Notch signaling pathway occur throughout C. elegans embryogenesis. These interactions have major roles in specifying cell fates and in tissue morphogenesis. The network of Notch interactions is linked in part through the Notch-regulated expression of components of the pathway, allowing one interaction to pattern subsequent ones. The Notch signal transduction pathway is highly conserved in animal embryogenesis. The REF-1 family of bHLH transcription factors are major targets of Notch signaling in the C. elegans embryo, and are distantly related to HES proteins that are targets of Notch signaling in Drosophila and vertebrates.
-
[
WormBook,
2006]
Sarcomeres within body wall muscle in C. elegans include attachments to the sarcolemma that are remarkably similar in structure to vertebrate adhesion complexes. Crucial early steps in muscle sarcomere assembly, a highly orchestrated affair involving many proteins, involve the assembly of these sarcomere attachments. The steps involved in initiating the correct placement of these attachments and other sarcomere substructures are poorly understood. Using mutants in C. elegans we are attempting to dissect the various steps in this process. We review what has been discovered to date and present a model of sarcomere assembly that initiates at the plasma membrane and involves proteins within muscle, the hypodermis and within the extracellular matrix.
-
[
WormBook,
2006]
In Drosophila and vertebrates, Hedgehog (Hh) signalling is mediated by a cascade of genes, which play essential roles in cell proliferation and survival, and in patterning of the embryo, limb buds and organs. In C. elegans, this pathway has undergone considerable evolutionary divergence; genes encoding homologues of key pathway members, including Hh, Smoothened, Cos2, Fused and Suppressor of Fused, are absent. Surprisingly, over sixty proteins (i.e. WRT, GRD, GRL, and QUA), encoded by a set of genes collectively referred to as the Hh-related genes, and two co-orthologs ( PTC-1 ,-3) of fly Patched, a Hh receptor, are present in C. elegans. Several of the Hh-related proteins are bipartite and all can potentially generate peptides with signalling activity, although none of these peptides shares obvious sequence similarity with Hh. In addition, the ptc -related ( ptr ) genes, which are present in a single copy in Drosophila and vertebrates and encode proteins closely related to Patched, have undergone an expansion in number in nematodes. A number of functions, including roles in molting, have been attributed to the C. elegans Hh-related, PTC and PTR proteins; most of these functions involve processes that are associated with the trafficking of proteins, sterols or sterol-modified proteins. Genes encoding other components of the Hh signalling pathway are also found in C. elegans, but their functions remain to be elucidated.
-
[
WormBook,
2005]
C. elegans has emerged as a powerful genetic model organism in which to study synaptic function. Most synaptic proteins in the C. elegans genome are highly conserved and mutants can be readily generated by forward and reverse genetics. Most C. elegans synaptic protein mutants are viable affording an opportunity to study the functional consequences in vivo. Recent advances in electrophysiological approaches permit functional analysis of mutant synapses in situ. This has contributed to an already powerful arsenal of techniques available to study synaptic function in C. elegans. This review highlights C. elegans mutants affecting specific stages of the synaptic vesicle cycle, with emphasis on studies conducted at the neuromuscular junction.
-
[
WormBook,
2006]
The DNA in eukaryotes is wrapped around a histone octamer core, together comprising the main subunit of chromatin, the nucleosome. Modifications of the nucleosomal histones in the genome correlate with the ability or inability of chromatin to form higher order structures, that in turn influence gene activity. The genome in primordial germ cells in early C. elegans germ cells carries a unique pattern of histone modifications that correlate with transcriptional repression in these cells, and aspects of this chromatin regulation are conserved in Drosophila. Loss of repression causes sterility in the adults, suggesting that chromatin-based repression is essential for germ line maintenance. The post-embryonic germ line also exhibits unique and dynamic aspects of chromatin regulation, with chromosome-wide regulation particularly evident on the X chromosome. Several properties of X-specific chromatin assembly are also sex-specific. These properties appear to be responding to the meiotic pairing status of the X chromosome, rather than the sex of the germ cells. Finally, gamete-specific chromatin regulation during gametogenesis impacts on X chromatin assembly in the offspring, leading to an apparent sperm-imprinted X inactivation in the early embryo. Other potential roles for germline-specific modes of chromatin assembly in genome regulation and protection are discussed.
-
[
Genetics,
2019]
While <i>Caenorhabditis elegans</i> was originally regarded as a model for investigating determinate developmental programs, landmark studies have subsequently shown that the largely invariant pattern of development in the animal does not reflect irreversibility in rigidly fixed cell fates. Rather, cells at all stages of development, in both the soma and germline, have been shown to be capable of changing their fates through mutation or forced expression of fate-determining factors, as well as during the normal course of development. In this chapter, we review the basis for natural and induced cellular plasticity in <i>C. elegans</i> We describe the events that progressively restrict cellular differentiation during embryogenesis, starting with the multipotency-to-commitment transition (MCT) and subsequently through postembryonic development of the animal, and consider the range of molecular processes, including transcriptional and translational control systems, that contribute to cellular plasticity. These findings in the worm are discussed in the context of both classical and recent studies of cellular plasticity in vertebrate systems.
-
[
WormBook,
2008]
The role of neuropeptides in modulating behavior is slowly being elucidated. With the sequencing of the C. elegans genome, the extent of the neuropeptide genes in C. elegans can be determined. To date, 113 neuropeptide genes encoding over 250 distinct neuropeptides have been identified. Of these, 40 genes encode insulin-like peptides, 31 genes encode FMRFamide-related peptides, and 42 genes encode non-insulin, non-FMRFamide-related neuropeptides. As in other systems, C. elegans neuropeptides are derived from precursor molecules that must be post-translationally processed to yield the active peptides. These precursor molecules contain a single peptide, multiple copies of a single peptide, multiple distinct peptides, or any combination thereof. The neuropeptide genes are expressed extensively throughout the nervous system, including in sensory, motor, and interneurons. In addition, some of the genes are also expressed in non-neuronal tissues, such as the somatic gonad, intestine, and vulval hypodermis. To address the effects of neuropeptides on C. elegans behavior, animals in which the different neuropeptide genes are inactivated or overexpressed are being isolated. In a complementary approach the receptors to which the neuropeptides bind are also being identified and examined. Among the knockout animals analyzed thus far, defects in locomotion, dauer formation, egg laying, ethanol response, and social behavior have been reported. These data suggest that neuropeptides have a modulatory role in many, if not all, behaviors in C. elegans.
-
[
WormBook,
2006]
The completion of the C. elegans genome sequence permits the comprehensive examination of the expression and function of genes. Annotation of virtually every encoded gene in the genome allows systematic analysis of those genes using high-throughput assays, such as microarrays and RNAi. This chapter will center on the use of microarrays to comprehensively identify genes with enriched expression in the germ line during development. This knowledge provides a database for further studies that focus on gene function during germline development or early embryogenesis. Additionally, a comprehensive overview of germline gene expression can uncover striking biases in how genes expressed in the germ line are distributed in the genome, leading to new discoveries of global regulatory mechanisms in the germ line.
-
[
WormBook,
2005]
TGF-beta superfamily ligands play fundamental roles in the development and physiology of diverse animal species. Genetic and genomic analyses in the model organism Caenorhabditis elegans have contributed to the understanding of TGF-beta -related signal transduction mechanisms. In this chapter, I describe the currently characterized TGF-beta -related signals and signal transduction cassettes in C. elegans. Homology searches of the genome identify five TGF-beta -related genes, for which functions have been identified for three. Two of the TGF-beta -related genes,
daf-7 and
dbl-1 , function through conventional signaling pathways. These signaling pathways are comprised of ser/thr kinase receptors, Smads, and transcription co-factors. A third TGF-beta -related gene,
unc-129 , functions in axonal guidance using novel signaling mechanisms. Thus, TGF-beta -related signaling in C. elegans proceeds via both conserved and novel paradigms that can inform studies in other animal systems.