-
[
Sci Aging Knowledge Environ,
2002]
This article reviews key events in the genetic analysis of aging in the worm. The events are presented in the form of a timeline and include landmark papers, key meetings, and the development of important funding agencies. I also speculate on events that might appear in this timeline if this review were written in the distant future.
-
[
Cell,
2002]
In 1963, Sydney Brenner, one of the founders of molecular biology, had reached an intellectual impasse. He felt that there were few advances left in that field that would have the significance of the discovery of mRNA and the elucidation of the genetic code, both of which he had participated in, and in any case with so many Americans joining in, the chemical details of replication and so forth would all be worked out soon. Brenner thought large thoughts, and the questions that were left seemed too
-
[
Development,
2024]
Germ granules have been hypothesized to deliver mRNAs of germ cell fate determinants to primordial germ cells. Now, a new study in Development finds that many mRNAs enriched in germ granules are not involved in germline development in Caenorhabditis elegans. To find out more about the story behind the paper, we caught up with first author Alyshia Scholl, second author Yihong Liu and corresponding author Geraldine Seydoux, Professor at Johns Hopkins University School of Medicine.
-
[
Toxicon,
2001]
Diphtheria toxin is one of the most extensively studied and well understood bacterial toxins. Ever since its discovery in the late 1800's this toxin has occupied a central focus in the field of toxinology. In this review, I present a chronology of major discoveries that led to our current understanding of the structure and activity of diphtheria toxin.
-
[
Genetics,
1996]
I fell in love with Caenorhabditis elegans in the summer of '72. Our relationship was cemented four years later, 20 years ago now, by the publication of a paper in Genetics on C. elegans chromosome rearrangements (Herman et al. 1976). My pleasant assignment here is to describe the beginning of that work and to relate it to current worm cytogenetics and chromosome mechanics.
-
Gradolewski D, Krawczuk M, Tojza P, Koncicki A, Ambroziak D, Redlarski G, Lewczuk B, Jakubiuk K, Jaworski J, Skarbek L, Piechocki J, Zak A
[
Biomed Res Int,
2015]
Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis.
-
[
Ecol Dis,
1983]
Medical records concerning filarial diseases in Ceylon date from the account of Davy[1], though there are hints as to the more obvious manifestations in the old chronicles of the country, too. A first survey was conducted in 1912/1913 concentrating on urban areas, followed by a second survey in the 1930s with emphasis on the rural parts. The results displayed a remarkable distribution pattern: Wuchereria bancrofti, the so-called "urban type", concentrated in Galle and Matara towns, whereas Brugia malayi, the "rural type", widespread along the southwest coast from Matara to Negombo, plus isolated pockets in the northwest, central north, east and south. The survey of the 1930s lead to the supposition that the occurrence of B. malayi must have something to do with the distribution of certain water plants, a suspicion later on confirmed in that Pistia stratiotes in particular--but other water plants as well--are essential for the survival of the vector (Taeniorhynchus (Mansonia) uniformis) during its early (submersed) stages of development. A determined effort to remove the water plants from tanks etc. reduced the rural type with encouraging results. At the same time, a combination of factors, in particular the war-time sojourn of masses of troops from Africa, already infected by filarial diseases, in the southwestern coastal areas triggered off an unexpected spread of the urban type out of its early "bridge-heads" in Galle and Matara towns to invade the southwest coastal areas, and, later on, supported by increased population mobility, to advance further inland too. At present, there is no remedy within sight to give some hope to come to grips with this problem as the vector, Culex pipiens fatigans, is ubiquitous and finds suitable breeding grounds practically everywhere. Research into the history of filarial diseases in Ceylon points as far as B. malayi is concerned, to an invasion by a Malayan army under the Kalinga kings during the days of close relations between Ceylon and southeast Asia, i.e. during the 12th and 13th centuries, and as far as W. bancrofti is concerned, a Chinese army, invading the southern coast in the early 15th century, is made responsible. Filarial diseases in Ceylon present a particular interesting case of geomedical research; but inspite of encouraging results in fighting the rural type, i.e. B. malayi, the urban type, W. bancrofti, seems to remain a problem of public health in the island for the forseeable future.
-
[
Science,
1995]
Programmed cell death (PCD), or apoptosis, is a conserved terminal differentiation program that multicellular organisms have evolved to get rid of cells that are not needed, that are in the way, or that are potentially dangerous. PCD can be equated with cell suicide in the sense that the dying cell plays an active role in promoting its own demise and removal from the organism.
-
[
Bioessays,
2015]
Nowadays, in the Internet databases era, certain knowledge is being progressively lost. This knowledge, which we feel is essential and should be acquired through education, is the understanding of how the pioneer researchers faced major questions in their field and made their discoveries.
-
[
Development,
2024]
Male pheromones accelerate the development of hermaphrodite larvae in Caenorhabditis elegans, but the importance of this phenomenon is not well understood. A new paper in Development shows that pheromone exposure during larval stage 3 helps coordinate behaviour and development by modulating the timing of the transition to larval stage 4. To learn more about the story behind the paper, we caught up with first author Denis Faerberg who carried out the work in the lab of the corresponding author Ilya Ruvinsky at Northwestern University, USA.