-
[
Trends Genet,
1999]
The genome sequence of the free-living nematode Caenorhabiditis elegans is nearly complete, with resolution of the final difficult regions expected over the next few months. This will represent the first genome of a multicellular organism to be sequenced to completion. The genome is approximately 97 Mb in total, and encodes more than 19 099 proteins, considerably more than expected before sequencing began. The sequencing project - a collaboration between the Genome Sequencing Center in St Louis and the Sanger Centre in Hinxton - has lasted eight years, with the majority of the sequence generated in the past four years. Analysis of the genome sequence is just beginning and represents an effort that will undoubtedly last more than another decade. However, some interesting findings are already apparent, indicating that the scope of the project, the approach taken, and the usefulness of having the genetic blueprint for this small organism have been well worth the effort.
-
[
Nat Rev Genet,
2001]
The nematode Caenorhabditis elegans is well known to practising biologists as a model organism. Early work with C. elegans is best understood as part of a descriptive tradition in biological practice. Although the resources that have been generated by the C. elegans community have been revolutionary, they were produced by traditional methods and approaches. Here, I review the choice and use of the worm as an experimental organism for genetics and neurobiology that began in the 1960s.
-
[
J Proteomics,
2010]
Much of our knowledge on heredity, development, physiology and the underlying cellular and molecular processes is derived from the studies of model, or reference, organisms. Despite the great variety of life, a common base of shared principles could be extracted by studying a few life forms, selected based on their amenability to experimental studies. Very briefly, the origins of a few model organisms are described, including E. coli, yeast, C. elegans, Drosophila, Xenopus, zebrafish, mouse, maize and Arabidopsis. These model organisms were chosen because of their importance and wide use, which made them systems of choice for genome-wide studies. Many of their genomes were between the first to be fully sequenced, opening unprecedented opportunities for large-scale transcriptomics and proteomics studies.
-
[
Genetics,
2015]
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.
-
[
Philos Trans R Soc Lond B Biol Sci,
2015]
The article 'Structure of the nervous system of the nematode Caenorhabditis elegans' (aka 'The mind of a worm') by White et al., published for the first time the complete set of synaptic connections in the nervous system of an animal. The work was carried out as part of a programme to begin to understand how genes determine the structure of a nervous system and how a nervous system creates behaviour. It became a major stimulus to the field of C. elegans research, which has since contributed insights into all areas of biology. Twenty-six years elapsed before developments, notably more powerful computers, made new studies of this kind possible. It is hoped that one day knowledge of synaptic structure, the connectome, together with results of many other investigations, will lead to an understanding of the human brain. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
-
[
Genetics,
2002]
This article marks the 25th anniversary of a paper reporting the first sex-determination mutants to be found in the nematode Caenorhabditis elegans. The isolation of these mutants initiated an extensive analysis of nematode sex determination and dosage compensation, carried out by a number of laboratories over the subsequent decades. As a result, the process of sex determination is now one of the most thoroughly understood parts of C. elegans development, in both genetic and molecular terms. It has also proved to have interesting repercussions on the study of sex determination in other organisms.
-
[
Toxicon,
2001]
Diphtheria toxin is one of the most extensively studied and well understood bacterial toxins. Ever since its discovery in the late 1800's this toxin has occupied a central focus in the field of toxinology. In this review, I present a chronology of major discoveries that led to our current understanding of the structure and activity of diphtheria toxin.
-
[
Genetics,
2019]
The Genetics Society of America's (GSA) Thomas Hunt Morgan Medal honors researchers for lifetime achievement in genetics. The recipient of the 2018 Morgan Medal, Barbara J. Meyer of the Howard Hughes Medical Institute and the University of California, Berkeley, is recognized for her career-long, groundbreaking investigations of how chromosome behaviors are controlled. Meyer's work has revealed mechanisms of sex determination and dosage compensation in <i>Caenorhabditis elegans</i> that continue to serve as the foundation of diverse areas of study on chromosome structure and function today, nearly 40 years after she began her work on the topic.
-
[
Exp Oncol,
2012]
The story of cell death began with the origins of cell biology, including important observations by Elie (Ilya) Metchnikoff, who realized that phagocytes engulfed dying cells. Most of the early studies were observational. By the middle of the 20th C, researchers were beginning to explore how cells died, had recognized that cell death was a physiologically controlled process, that the most common mode of death ("shrinkage necrosis", later apoptosis) was tightly controlled, and were speculating whether lysosomes were "suicide bags". Just prior to 1990 several discoveries led to rapid expansion of interest in the field and elucidation of the mechanisms of apoptosis. Closer to the beginning of the 21st C comprehensive analysis of the molecules that controlled and effected apoptosis led to the conclusion that autophagic processes were linked to apoptosis and could serve to limit or increase cell death. Today, realizing that knowledge of the components of cell death has not yet produced pharmaceuticals of therapeutic value, research is turning to questions of what metabolic or other mechanisms indirectly control the activation or suppression of the cell death positive feedback loop. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later"
-
[
Cell,
2002]
In 1963, Sydney Brenner, one of the founders of molecular biology, had reached an intellectual impasse. He felt that there were few advances left in that field that would have the significance of the discovery of mRNA and the elucidation of the genetic code, both of which he had participated in, and in any case with so many Americans joining in, the chemical details of replication and so forth would all be worked out soon. Brenner thought large thoughts, and the questions that were left seemed too