-
[
WormBook,
2007]
The soil nematode Caenorhabditis briggsae is an attractive model system for studying evolution of both animal development and behavior. Being a close relative of C. elegans, C. briggsae is frequently used in comparative studies to infer species-specific function of the orthologous genes and also for studying the dynamics of chromosome evolution. The genome sequence of C. briggsae is valuable in reverse genetics and genome-wide comparative studies. This review discusses resources and tools, which are currently available, to facilitate study of C. briggsae in order to unravel mechanisms of gene function that confer morphological and behavioral diversity.
-
[
WormBook,
2005]
The C. elegans genome contains approximately 1300 genes that produce functional noncoding RNA (ncRNA) transcripts. Here we describe what is currently known about these ncRNA genes, from the perspective of the annotation of the finished genome sequence. We have collated a reference set of C. elegans ncRNA gene annotation relative to the WS130 version of the genome assembly, and made these data available in several formats.
-
[
WormBook,
2006]
The completion of the C. elegans genome sequence permits the comprehensive examination of the expression and function of genes. Annotation of virtually every encoded gene in the genome allows systematic analysis of those genes using high-throughput assays, such as microarrays and RNAi. This chapter will center on the use of microarrays to comprehensively identify genes with enriched expression in the germ line during development. This knowledge provides a database for further studies that focus on gene function during germline development or early embryogenesis. Additionally, a comprehensive overview of germline gene expression can uncover striking biases in how genes expressed in the germ line are distributed in the genome, leading to new discoveries of global regulatory mechanisms in the germ line.
-
[
WormBook,
2006]
Transposons are discrete segments of DNA capable of moving through the genome of their host via an RNA intermediate in the case of class I retrotransposon or via a "cut-and-paste" mechanism for class II DNA transposons. Since transposons take advantage of their host''s cellular machinery to proliferate in the genome and enter new hosts, transposable elements can be viewed as parasitic or "selfish DNA". However, transposons may have been beneficial for their hosts as genome evolution drivers, thus providing an example of molecular mutualism. Interactions between transposon and C. elegans research were undoubtedly mutualistic, leading to the advent of needed genomic tools to drive C. elegans research while providing insights into the transposition field. Tc1, the first C. elegans transposon to be identified, turned out to be the founding member of a widespread family of mobile elements: the Tc1/ mariner superfamily. The investigation into transposition regulation in C. elegans has uncovered an unforeseen link between transposition, genome surveillance and RNA interference. Conversely, transposons were utilized soon after their identification to inactivate and clone genes, providing some of the first molecular identities of C. elegans genes. Recent results suggest that transposons might provide a means to engineer site-directed mutations into the C. elegans genome. This article describes the different transposons present in the C. elegans genome with a specific emphasis on the ones that proved to be mobile under laboratory conditions. Mechanisms and control of transposition are discussed briefly. Some tools based on the use of transposons for C. elegans research are presented at the end of this review.
-
[
Methods Cell Biol,
1995]
Caenorhabditis elegans is in all likelihood the first metazoan animal whose entire genome will be determined. In addition, a very detailed description of the animal's morphology, development, and physiology is available (see elsewhere in this book, and Wood, 1988). Thus, the complete phenotype and genotype of an animal will be known. What is not known is how genotype determines phenotype; to study this, one needs to establish connections between genome sequence and phenotypes. Much has been done by classic or forward genetics: mutagenesis experiments have identified loci involved in a specific trait. Many of these loci have already been defined at the molecular level, and the genome sequence will certainly aid in the identification of many more. The opposite approach, reverse genetics, becomes naturally more important when more of the genome sequence is determined: Given the sequence of a gene of which nothing else is know, how can the function of that gene be determined? Reverse genetics is more than targeted inactivation. One can study a gene's function by several approaches...|
-
A previous chapter in this series (1) described, primarily, the physical mapping of the 100 Mb Caenorhabditis elegans genome by fingerprinting of cosmid clones, and the linking of the contigs thus derived by YAC hybridization. At that time, the primary function of the map was to enhance the molecular genetics of the organism by facilitating the cloning of known genes, and to serve as an archive for genomic information. However, a clonal physical map - even with good alignment to the genetic map - carries only a tiny proportion of the information present in the genome. Consequently, the current objective of the C. elegans genome project (2) is to establish of the entire genomic sequence. The bacterial clone map, although incomplete by virtue of the uncloneability of regions of the genome in cosmid vectors (a factor which we shall discuss later in this chapter), has proved a sound basis for the systematic sequence analysis. The sevenfold cosmid coverage has a resolution sufficient to enable the selection of a subset of cosmids for sequencing such that, on average, each clone contributes 30 kb of unique sequence to the whole. Sequencing projects based on bacterial clone maps (3-5) of a number of other genomes of a range of sizes are also well advanced, in particular Saccharomyces cerevisiae (15 Mb; complete), Schizosaccharomyces pombe (15Mb), and Drosohpila melanogaster (150 Mb). Although it has recently been demonstrated that small bacterial genomes can be sequenced by direct shotgun sequence analysis of the entire genome with no prior mapping (6), the ability to interrelate and map clone sets, whether derived by random selection of in a directed manner, is still the most convenient route to the sequence analysis of larger genomes.
-
In the next five years, molecular biology will get its first look at the complete genetic code of a multicellular animal. The Caenorhabditis elegans genome sequencing project, a collaboration between Robert Waterston's group in St. Louis and John Sulston's group in Cambridge, is currently on schedule towards its goal of obtaining the complete sequence of this organism and all its estimated 15,000 to 20,000 genes by 1998. By that time, we should also know the complete genome sequence of a few other organisms as well, including the prokaryote Escherichia coli and the single-celled eukaryote Saccharomyces
-
[
WormBook,
2007]
Heterorhabditis bacteriophora is an entomopathogenic nematode (EPN) mutually associated with the enteric bacterium, Photorhabdus luminescens, used globally for the biological control of insects. Much of the previous research concerning H. bacteriophora has dealt with applied aspects related to biological control. However, H. bacteriophora is an excellent model to investigate fundamental processes such as parasitism and mutualism in addition to its comparative value to Caenorhabditis elegans. In June 2005, H. bacteriophora was targeted by NHGRI for a high quality genome sequence. This chapter summarizes the biology of H. bacteriophora in common and distinct from C. elegans, as well as the status of the genome project.
-
[
1988]
The development of a multicellular organism from a single-celled egg involves the coordinated control of many cells and tissues. How are cells specified to develop as one cell type rather than another, in one position rather than another, and at one time rather than another? What is the molecular basis of the spatial and temporal cues necessary to direct development of the organism? The information for this developmental feat is stored in the egg-either in its genome or in products of the maternal genome contributed to that cell. Developmental genetics provides a powerful way to investigate that information. The nematode, Caenorhabditis elegans, has proven to be an excellent model organism for analysis of the genes that control development...
-
[
WormBook,
2006]
The DNA in eukaryotes is wrapped around a histone octamer core, together comprising the main subunit of chromatin, the nucleosome. Modifications of the nucleosomal histones in the genome correlate with the ability or inability of chromatin to form higher order structures, that in turn influence gene activity. The genome in primordial germ cells in early C. elegans germ cells carries a unique pattern of histone modifications that correlate with transcriptional repression in these cells, and aspects of this chromatin regulation are conserved in Drosophila. Loss of repression causes sterility in the adults, suggesting that chromatin-based repression is essential for germ line maintenance. The post-embryonic germ line also exhibits unique and dynamic aspects of chromatin regulation, with chromosome-wide regulation particularly evident on the X chromosome. Several properties of X-specific chromatin assembly are also sex-specific. These properties appear to be responding to the meiotic pairing status of the X chromosome, rather than the sex of the germ cells. Finally, gamete-specific chromatin regulation during gametogenesis impacts on X chromatin assembly in the offspring, leading to an apparent sperm-imprinted X inactivation in the early embryo. Other potential roles for germline-specific modes of chromatin assembly in genome regulation and protection are discussed.