[
Parasitol Today,
1996]
Parasitic nematode infections remain a major public health problem in many parts of the world. Because most of the current strategies aimed at controlling parasitic nematode infections have met with only limited success, it may be time to consider alternative approaches. An aspect of nematode biology that has drawn little attention as a target for control is the reproductive process. Although there are numerous facets of the overall reproductive biology of nematodes that hold potential as targets for intervention, Alan Scott here focuses on the male reproductive system, and outlines some of the known unique processes and characteristics of sperm formation and sperm function that could be exploited to block fertilization.
[
Parasitol Today,
2000]
Gene discovery programs centred around expressed sequence tag (EST) and genome sequencing projects have predictably led to an exponential surge in the number of parasite gene sequences deposited in public databases. To take advantage of this wealth of sequence information, it is essential to develop rapid methods for elucidating the biological function or mode of action of individual genes. Here, Patricia Kuwabara and Alan Coulson discuss the virtues of a powerful epigenetic gene disruption technique, RNA-mediated interference (RNAi), which was originally developed for the nematode Caenorhabditis elegans. It is anticipated that this technique will not only provide insights into gene function, but also help investigators to mine the genome for candidate drug intervention or vaccine development targets, some of which may not be readily apparent on the basis of sequence information alone.
[
Autophagy,
2024]
Professor Richard (Rick) Morimoto is the Bill and Gayle Cook Professor of Biology and Director of the Rice Institute for Biomedical Research at Northwestern University. He has made foundational contributions to our understanding of how cells respond to various stresses, and the role played in those responses by chaperones. Working across a variety of experimental models, from <i>C</i>. <i>elegans</i> to human neuronal cells, he has identified a number of important molecular components that sense and respond to stress, and he has dissected how stress alters cellular and organismal physiology. Together with colleagues, Professor Morimoto has coined the term "proteostasis" to signify the homeostatic control of protein expression and function, and in recent years he has been one of the leaders of a consortium trying to understand proteostasis in healthy and disease states. I took the opportunity to talk with Professor Morimoto about proteostasis in general, the aims of the consortium, and how autophagy is playing an important role in their research effort.
[
Methods Cell Biol,
1995]
The clone-based physical map of the 100-Mb Caenorhabditis elegans genome has evolved over a number of years. Although the detection of clone overlaps and construction of the map have of necessity been carried out centrally, it has been essentially a community project. Without the provision of cloned markers and relevant map information by the C. elegans community as a whole, the map would lack the genetic anchor points and coherent structure that make it a viable entity. Currently, the map consists of 13 mapped contigs totaling in excess of 95 Mb and 2 significant unmapped contigs totaling 1.3 Mb. Telomeric clones are not yet in place. The map carries 600 physically mapped loci, of which 262 have genetic map data. With one exception, the physical extents of the remaining gaps are not known. The exception is the remaining gap on linkage group (LG) II. This has been shown to be bridged by a 225-kb Sse83871 fragment. Because the clones constituting the map are a central resource, there is essentially no necessity for individuals to construct cosmid and yeast artificial chromosome (YAC) libraries. Consequently, such protocols are not included here. Similarly, protocols for clone fingerprinting, which forms the basis of the determination of cosmid overlaps and the mapping of clones received from outside sources and has to be a centralized operation, and YAC linkage are not give here. What follows is essentially a "user's guide" to the physical map. Details of map construction are given where required for interpretation of the map as distributed. The physical mapping has been a collaboration between the MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (now at The Sanger Centre, Cambridge, UK) and Washington University School of Medicine, St. Louis, Missouri. Inquiries regarding map interpretation, information, and materials should be addressed to alan@sanger.ac.uk or rw@nematode.wustl.edu.