-
[
Evid Based Complement Alternat Med,
2013]
Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.
-
[
Bioessays,
2007]
Centriole duplication has been an area of interest since the late 1800s when Boveri suggested that these structures were central organizers for mitosis and cell division. Two groups12 have delineated a linear pathway for centriole assembly. In C. elegans, Pelletier and coworkers1 have identified intermediates in the pathway using cryo-electron tomography. Surprising, the first intermediate is a hollow tube of 60 nm that increases in diameter and then elongates before acquiring microtubules. Similar structures have not been observed to date in other centrioles.
-
[
Crit Rev Biochem Mol Biol,
2012]
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Marino-Ramirez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Hakkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
-
[
1983]
In 1974, Sydney Brenner published an elegant paper that described the genetic system of Caenorhabditis elegans and led to its use in research on a wide variety of topics, including aging (Brenner, 1974). Its small size (1mm as an adult) and determinate cell lineage has allowed a description of the entire somatic cell lineage from the one-cell stage to the adult (Sulston and Horvitz, 1977; Deppe et al., 1978; Kimble and Hirsh, 1979; Suslton et al., personal communication). Its ease of culture makes it an organism of choice for studies of various aspects of anatomy and physiology, including muscle formation and function (Zengel and Epstein, 1980; Mackenzie and Epstein, 1980), cuticle formation (Cox et al, 1981), neuroanatomy (Ward et al, 1975; Ware et al, 1975; Sulston et al, 1975), and behavior (Dusenbery, 1980). Several genes have been cloned by recombinant DNA techniques ablation (Kimble, 1981; Laufer and von Ehrenstin, 1981) procedures, as well as most of the modern molecular techniques, are in use.
-
[
Cell,
1997]
The demonstrations in two papers in this issue of Cell (Rocheleau et al., 1997; Thorpe et al., 1997) of the involvement of a Wnt pathway in very early embryogenesis in Caenorhabditis elegans provides another significant step toward the ambitious but realistic goal of understanding all the basic strategies used to control embryogenesis in this model organism. At the same time, they challenge some of the prevailing models of Wnt signaling, suggesting that interactions among Wnt pathway components may vary in different developmental processes. With these papers, as well as the earlier reports on Wnt pathway genes
lin-44,
lin-17, and
pop-1 (Herman et al., 1995; Lin et al., 1995; Harris et al., 1996; Sawa et al., 1996) and new studies on Wnt pahtway genes reported in recent meetings, worm breeders have become a significant force in the army of Wnt researchers. They have also illustrated how different systems can provide important new complementary insights.
-
[
Nucleus,
2015]
The nuclear envelope consists of 2 membranes separated by 30-50 nm, but how the 2 membranes are evenly spaced has been an open question in the field. Nuclear envelope bridges composed of inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins have been proposed to set and regulate nuclear envelope spacing. We tested this hypothesis directly by examining nuclear envelope spacing in Caenorhabditis elegans animals lacking UNC-84, the sole somatic SUN protein. SUN/KASH bridges are not required to maintain even nuclear envelope spacing in most tissues. However, UNC-84 is required for even spacing in body wall muscle nuclei. Shortening UNC-84 by 300 amino acids did not narrow the nuclear envelope space. While SUN proteins may play a role in maintaining nuclear envelope spacing in cells experiencing forces, our data suggest they are dispensable in most cells.
-
[
Front Cell Dev Biol,
2020]
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The <i>C. elegans</i> germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in <i>C. elegans</i> uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the <i>C. elegans</i> model system are likely relevant for other organisms.
-
[
Cell,
2004]
Heterotrimeric G proteins are well known for their function in signal transduction downstream of seven transmembrane receptors. More recently, however, genetic analysis in C. elegans and in Drosophila has revealed a second, essential function of these molecules in positioning the mitotic spindle and attaching microtubules to the cell cortex. Five new publications in Cell (Afshar et al., 2004; Du and Macara, 2004 [this issue of Cell]; Hess et al., 2004), Developmental Cell (Martin-McCaffrey et al., 2004), and Current Biology (Couwenbergs et al., 2004) show that this function is conserved in vertebrates and-like the classical pathway- involves cycling of G proteins between GDP and GTP bound conformations.
-
[
Annals of the New York Academy of Sciences,
1987]
Unlike mammalian spermatozoa, the spermatozoa of nematodes and certain crustaceans are nonflagellated, crawling cells. Spermatozoa of the nematode Caenorhabditis elegans are asymmetric cells with a single knobby pseudopod protruding from one side of a hemispherical cell body. The pseudopod appears granular, without organelles, microfilaments, or microtubules, but when examined more carefully, it is found to contain numerous thin filaments, 2-3 nm in diameter. The cell body contains a distinctive membranous organelle fused to the plasma membrane surrounding the cell body and also contains the nucleus and mitochondria. These spermatozoa lack many common cytoplasmic structures and organelles such as microtubules, microfilaments, ribosomes, golgi apparatus, or lysosomes. Our laboratory is interested in the genetic control of the morphogenesis and motility of these spermatozoa. By isolating mutations in genes that are expressed only during spermatogenesis and by identifying the gene products, we can dissect spermatogenesis genetically. In this way we can learn how individual genes control morphogenesis and participate in
-
[
Methods Cell Biol,
2012]
This chapter is dedicated to the study of aging in Caenorhabditis elegans (C. elegans). The assays are divided into two sections. In the first section, we describe detailed protocols for performing life span analysis in solid and liquid medium. In the second section, we describe various assays for measuring age-related changes. Our laboratory has been involved in several fruitful collaborations with non-C. elegans researchers keen on testing a role for their favorite gene in modulating aging (Carrano et al., 2009; Dong et al., 2007; Raices et al., 2008; Wolff et al., 2006). But even with the guidance of trained worm biologists, this undertaking can be daunting. We hope that this chapter will serve as a worthy compendium for those researchers who may or may not have immediate access to laboratories studying C. elegans.