-
[
1985]
Myosins from slime molds to brain cells show a remarkable commonality of general molecular properties. These characteristics include two globular domains or heads that contain ATPase and actin-binding sites and the fibrous, coiled-coil a-helical rod that interacts with other molecules in assembly. Two heavy chains (m.w. 200,000) contribute to both heads, whereas two kinds of light chains bind to each head. In this paper, we consider striated muscles and their myosins. The phylogenetically distant nematode body-wall muscles and rabbit fast skeletal muscles produce myosin heavy chains, with about 47% of the amino acid sequences in the heads and 37% of the amino acids in the rod being identical (Karn et al. 1984). Myosin heavy chains are therefore highly conserved proteins. Contrasting with the phylogenetic conservation of myosin structure and sequence is the diversity of supramolecular arrangements of myosin assemblies in striated muscles, the so-called thick filaments. The lengths of thick filaments range from 1.55 um in vertebrates, 2-4 um in insect flight muscles, 10 um in the nematode to 40 um in certain mollusks. The average diameters of these filaments range from about 15 nm in vertebrates, 20 nm in insects, 25 nm in nematodes to 50-100 nm in some molluscan muscles. The surface arrangements of the myosin heads also vary in these different species. The lattice arrangements between thick filaments and the interdigitating, actin-containing thin filaments differ in terms of symmetry and thick:thin stoichiometry between these muscles. It appears likely that other protein components of these muscles interact with the very similar myosins to produce this structural diversity. The relatively subtle differences between myosin isoforms may also be important in these interactions. We define isoform in the case of myosin, for example, as a protein that is defined as a myosin by biochemical criteria but that can be distinguished on the basis of intrinsic molecular structure from another myosin within the same organism. In this paper, we describe experiments suggesting that two genetically different isoforms of myosin play distinct roles in concert with other proteins during the assembly of thick filaments in
-
[
Curr Top Dev Biol,
2012]
Noncoding RNAs have emerged as an integral part of posttranscriptional gene regulation. Among that class of RNAs are the microRNAs (miRNAs), which posttranscriptionally regulate target mRNAs containing complementary sequences. The broad presence of miRNAs in lower eukaryotes, plants, and mammals highlights their importance throughout evolution. MiRNAs have been shown to regulate many pathways, including development, and disruption of miRNA function can lead to disease (Ivey and Srivastava, 2010; Jiang et al., 2009). Although the first miRNA genes were discovered in the nematode, Caenorhabditis elegans, almost 20 years ago, the field of miRNA research began when they were found in multiple organisms a little over a decade ago (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001; Lee et al., 1993; Pasquinelli et al., 2000; Wightman et al., 1993). Here, we review one of the first characterized miRNAs,
let-7, and describe its role in development and the intricacies of its biogenesis and function.
-
[
2005]
RNA interference (RNAi) is a recently discovered phenomenon in which doublestranded RNA (dsRNA) silences endogenous gene expression in a sequencespecific manner (Fire et al., 1998). Since its discovery, the use of RNAi has become widely employed in many organisms to specifically knock down gene function. RNAi shares a remarkable degree of similarity with silencing phenomena in other organisms (Cogoni et al., 1999a; Sharp, 1999). For instance, RNAi, posttranscriptional gene silencing in plants and cosuppression in fungi can all be activated by the presence of aberrant RNAs (Maine, 2000; Tijsterman et al., 2002a). Additionally, plant, worm, and fly cells or extracts undergoing RNA-mediated interference all contain small dsRNAs, around 25 nucleotides in length, identical to the sequences present in the silenced gene (Baulcombe, 1996; Hammond et al., 2000; Zamore et al., 2000; Catalanotto et al., 2000). The high degree of similarity between these RNA-mediated silencing phenomena supports the notion that they were derived from an ancient and conserved pathway used to regulate gene expression, presumably to eliminate defective RNAs and to defend against viral infections and transposons. (Zamore, 2002). Components of RNAi have also been implicated in developmental processes, suggesting that RNAi may play a broader role in regulating gene expression (Smardon et al., 2000; Knight et al., 2001; et al., Ketting et al., 2001). Although we have learned much about the general mechanisms underlying RNAi, a detailed understanding of how RNAi works remains to be elucidated. In this chapter we will discuss first the biology of RNAi, then the genes required for its function, and we will end with a discussion on recent findings that have implicated chromatin silencing in the mechanism of RNAi.
-
[
Methods Cell Biol,
2008]
The nuclear lamina is found between the inner nuclear membrane and the peripheral chromatin. Lamins are the main components of the nuclear lamina, where they form protein complexes with integral proteins of the inner nuclear membrane, transcriptional regulators, histones and chromatin modifiers. Lamins are required for mechanical stability, chromatin organization, Pol II transcription, DNA replication, nuclear assembly, and nuclear positioning. Mutations in human lamins cause at least 13 distinct human diseases, collectively termed laminopathies, affecting muscle, adipose, bone, nerve and skin cells, and range from muscular dystrophies to accelerated aging. Caenorhabditis elegans has unique advantages in studying lamins and nuclear lamina genes including low complexity of lamina genes and the unique ability of bacterially expressed C. elegans lamin protein to form stable 10 nm fibers. In addition, transgenic techniques, simple application of RNA interference, sophisticated genetic analyses, and the production of a large collection of mutant lines, all make C. elegans especially attractive for studying the functions of its nuclear lamina genes. In this chapter we will include a short review of our current knowledge of nuclear lamina in C. elegans and will describe electron microscopy techniques used for their analyses.
-
[
Methods Cell Biol,
1995]
DNA transformation assays in a whole organism provide experimental links between molecular structure and phenotype. Experiments with transgenic Caenorhabditis elegans start in general with the injection of DNA into the adult gonad. Effects on phenotype or gene expression patterns can be analyzed either in F1 progeny derived from the injected animals or in derived transgenic lines. Microinjection of C. elegans was first carried out by Kimble et al. (1982). Stinchcomb et al. (1985) then showed that injected DNA could be maintained for several generations in transgenic lines. The first selective methods for producing and maintaining transgenic lines were reported in 1986 (Fire, 1986). These methods have been considerably improved since then (Mello et al., 1991) , so that assays involving DNA transformation are now a standard part of the experimental repertoire for C. elegans.
-
[
2017]
Since their discovery in late 1970, transient receptor potential (TRP) channels have been implicated in a variety of cellular and physiological functions (Minke, 2010). The superfamily of TRP channels consists of nearly 30 members that are organized into seven major subgroups based on their specific function and sequence similarities (Owsianik et al., 2006; Ramsey et al., 2006). With the exception of TRPN channels that are only found in invertebrates and fish, mammalian genomes contain representatives of all six subfamilies: (1) TRPV (vanilloid); (2) TRPC (canonical); (3) TRPM (melastatin); (4) TRPA (ankyrin); (5) TRPML (mucolipin); and (6) TRPP (polycystin). TRP channels play crucial regulatory roles in many physiological processes, including those associated with reproductive tissues. As calcium-permeable cation channels that respond to a variety of signals (Clapham et al., 2003; Wu et al., 2010), TRP channels exert their role as sensory detectors in both male and female gametes, and play regulatory functions in germ cell development and maturation. Recent evidence obtained from Caenorhabditis elegans studies point to the importance of these proteins during fertilization where certain sperm TRP channels could migrate from a spermatozoon into an egg to ensure successful fertilization and embryo development. In this chapter we discuss how TRP channels can regulate both female and male fertility in different species and their specific roles.
-
[
1969]
In order to study properly the nutrition and culture of nematodes, it is desirable to establish the organisms in axenic culture. Only in this way can the metabolic abilities of the nematodes be separated from those of coexisting and interacting organisms. One may settle for a mono-axenic culture, but the best way to attain this is to obtain axenic nematodes and then add the second organism or tissue, for example, alfalfa callus tissue for plant parasitic nematodes (Krusberg, 1961). This chapter will devote itself, in the main, to recent work on the culture and nutrition of nematodes, free-living and parasitic, and will refer only in passing to work already thoroughly reviewed (Dougherty et al., 1959; Nicholas, et al., 1959; Dougherty, 1960).
-
[
Methods Cell Biol,
1995]
Complementary DNA libraries are useful tools for uncovering genes of interest in C. elegans and finding specific homologies to genes in other organisms (Waterston et al., 1992; McCombie et al., 1992). When working with existing cDNA libraries, be sure to carefully choose which libraries would be most beneficial to the type of research being done. Some libraries may be specific for genes that are present in lower copy numbers, whereas others may be of a more general nature. It is important to fully understand the source and construction of the library you will be working with. Once an appropriate library has been chosen, work may begin to isolate a specific cDNA and sequence it completely or to survey many cDNAs by single-pass DNA sequencing. Whatever the project, it is important to develop a specific strategy for both the sequencing and the organization of the clones being characterized. The strategies and procedures we have outlined in this chapter have proven effective for rapid and comprehensive cDNA characterization.
-
[
Methods Cell Biol,
1995]
Sequence analysis of cosmids from C. elegans and other organisms currently is best done using the random or "shotgun" strategy (Wilson et al., 1994). After shearing by sonication, DNA is used to prepare M13 subclone libraries which provide good coverage and high-quality sequence data. The subclones are assembled and the data edited using software tools developed especially for C. elegans genomic sequencing. These same tools facilitate much of the subsequent work to complete both strands of the sequence and resolve any remaining ambiguities. Analysis of the finished sequence is then accomplished using several additional computer tools including Genefinder and ACeDB. Taken together, these methods and tools provide a powerful means for genome analysis in the nematode.
-
[
1979]
We have isolated temperature sensitive maternal effect mutants in the free-living nematode Caenorhabditis elegans. We use C. elegans for several basic reasons. It is easy to culture in the laboratory and it has a rapid life cycle. The genetics of C. elegans have been elucidated by Brenner and more recently have been refined by the lethal analysis of Herman et. al. Both embryonic and postembryonic development can be observed directly and conveniently on the living worm with Nomarski differential interference optics because egg shell and worm cuticle are transparent. The precise embryonic cell lineages of C. elegans are known from fertilization to the 200 blastomere stage. All of the postembryonic somatic cell lineages are precisely known. It ...