-
Bessa C, Duarte-Silva S, Maciel P, Bessa J, Silverman RB, Miranda A, Kang S, Summavielle T, Oliveira S, da Silva Santos L, Neto MF, Esteves S, Brielmann RM, Neves-Carvalho A, Teixeira-Castro A, Oliveira P, Morimoto RI, Silva-Fernandes A, Jalles A
[
Brain,
2015]
Polyglutamine diseases are a class of dominantly inherited neurodegenerative disorders for which there is no effective treatment. Here we provide evidence that activation of serotonergic signalling is beneficial in animal models of Machado-Joseph disease. We identified citalopram, a selective serotonin reuptake inhibitor, in a small molecule screen of FDA-approved drugs that rescued neuronal dysfunction and reduced aggregation using a Caenorhabditis elegans model of mutant ataxin 3-induced neurotoxicity. MOD-5, the C. elegans orthologue of the serotonin transporter and cellular target of citalopram, and the serotonin receptors SER-1 and SER-4 were strong genetic modifiers of ataxin 3 neurotoxicity and necessary for therapeutic efficacy. Moreover, chronic treatment of CMVMJD135 mice with citalopram significantly reduced ataxin 3 neuronal inclusions and astrogliosis, rescued diminished body weight and strikingly ameliorated motor symptoms. These results suggest that small molecule modulation of serotonergic signalling represents a promising therapeutic target for Machado-Joseph disease.
-
[
Nat Genet,
1994]
We have identified a novel gene containing CAG repeats and mapped it to chromosome 14q32.1, the genetic locus for Machado-Joseph disease (MJD). In normal individuals the gene contains between 13 and 36 CAG repeats, whereas most of the clinically diagnosed patients and all of the affected members of a family with the clinical and pathological diagnosis of MJD show expansion of the repeat-number (from 68-79). Southern blot analyses and genomic cloning demonstrates the existence of related genes. These results raise the possibility that similar abnormalities in related genes may give rise to diseases similar to MJD.
-
[
FASEB J,
2007]
Machado-Joseph disease (MJD) is the most common dominant spinocerebellar ataxia. MJD is caused by a CAG trinucleotide expansion in the ATXN3 gene, which encodes a protein named ataxin-3. Ataxin-3 has been proposed to act as a deubiquitinating enzyme in the ubiquitin-proteasome pathway and to be involved in transcriptional repression; nevertheless, its precise biological function(s) remains unknown. To gain further insight into the function of ataxin-3, we have identified the Caenorhabditis elegans orthologue of the ATXN3 gene and characterized its pattern of expression, developmental regulation, and subcellular localization. We demonstrate that, analogous to its human orthologue, C. elegans ataxin-3 has deubiquitinating activity in vitro against polyubiquitin chains with four or more ubiquitins, the minimum ubiquitin length for proteasomal targeting. To further evaluate C. elegans ataxin-3, we characterized the first known knockout animal models both phenotypically and biochemically, and found that the two C. elegans strains were viable and displayed no gross phenotype. To identify a molecular phenotype, we performed a large-scale microarray analysis of gene expression in both knockout strains. The data revealed a significant deregulation of core sets of genes involved in the ubiquitin-proteasome pathway, structure/motility, and signal transduction. This gene identification provides important clues that can help elucidate the specific biological role of ataxin-3 and unveil some of the physiological effects caused by its absence or diminished function.--Rodrigues, A-J., Coppola, G., Santos, C., do Carmo Costa, M., Ailion, M., Sequeiros, J., Geschwind, D. H., Maciel, P. Functional genomics and biochemical characterization of the C. elegans orthologue of the Machado-Joseph disease protein ataxin-3.
-
[
MicroPubl Biol,
2024]
Inhibition of acetylcholinesterase (AChE) is a common used treatment option for Alzheimer's disease. However, there has been limited research on the potential use of AChE inhibitors for the treatment of Machado-Joseph disease (MJD)/Spinocerebellar Ataxia 3 (SCA3), in spite of the positive results using AChE inhibitors in patients with other inherited ataxias. MJD/SCA3, the most common form of dominant Spinocerebellar Ataxia worldwide, is caused by an expansion of the polyglutamine tract within the ataxin-3 protein, and is characterized by motor impairments. Our study shows that administration of the AChE inhibitor neostigmine is beneficial in treating the locomotion defective phenotype of a SCA3/MJD model of <i>C. elegans</i> and highlights the potential contribution of AChE enzymes to mutant ataxin-3-mediated toxicity.
-
Oliveira JF, Vilaca JL, Brignull HR, Ailion M, Teixeira-Castro A, Dias N, Neves-Carvalho A, Maciel P, Morimoto RI, Jalles A, Rodrigues P
[
Hum Mol Genet,
2011]
The risk of developing neurodegenerative diseases increases with age. Although many of the molecular pathways regulating proteotoxic stress and longevity are well characterized, their contribution to disease susceptibility remains unclear. In this study, we describe a new Caenorhabditis elegans model of Machado-Joseph disease pathogenesis. Pan-neuronal expression of mutant ATXN3 leads to a polyQ-length dependent, neuron subtype-specific aggregation and neuronal dysfunction. Analysis of different neurons revealed a pattern of dorsal nerve cord and sensory neuron susceptibility to mutant ataxin-3 that was distinct from the aggregation and toxicity profiles of polyQ-alone proteins. This reveals that the sequences flanking the polyQ-stretch in ATXN3 have a dominant influence on cell-intrinsic neuronal factors that modulate polyQ-mediated pathogenesis. Aging influences the ATXN3 phenotypes which can be suppressed by the downregulation of the insulin/insulin growth factor-1-like signaling pathway and activation of heat shock factor-1.
-
[
Elife,
2022]
Previously, we reported that the Polo-like kinase PLK-1 phosphorylates the single <i>C. elegans</i> lamin (LMN-1) to trigger lamina depolymerization during mitosis. We showed that this event is required to form a pronuclear envelopes scission event that removes membranes on the juxtaposed oocyte and sperm pronuclear envelopes in the zygote, allowing the parental chromosomes to merge in a single nucleus after segregation (Velez-Aguilera et al., 2020). Here we show that cortical microtubule pulling forces contribute to pronuclear envelopes scission by promoting mitotic spindle elongation, and conversely, nuclear envelope remodeling facilitates spindle elongation. We also demonstrate that weakening the pronuclear envelopes via PLK-1-mediated lamina depolymerization, is a prerequisite for the astral microtubule pulling forces to trigger pronuclear membranes scission. Finally, we provide evidence that PLK-1 mainly acts via lamina depolymerization in this process. These observations thus indicate that temporal coordination between lamina depolymerization and mitotic spindle elongation facilitates pronuclear envelopes scission and parental genomes unification.
-
[
Adv Exp Med Biol,
2018]
Animal models are an important tool to study the pathophysiology of Machado-Joseph Disease (MJD). So far, animal models using simple organisms (like the round worm Caenorhabditis elegans or the fruit fly drosophila) but also mammalian models (mouse and even a non-human primate model) have been generated to study MJD. While simple organisms made an important contribution to the identification of pathophysiological mechanisms in MJD and were further used for modifier and screening purposes, mammalian models recapitulate major disease features of MJD in humans and are therefore a highly valuable tool for e.g. the validation of mechanisms or for pre-clinical validation of treatment approaches. Here we give an overview about the strategies which were used to model MJD and about the different models generated so far. We further highlight advantages of specific model organisms and describe the new findings which were made employing these animal models of MJD.
-
[
Free Radic Biol Med,
2020]
Hyptis suaveolens (HS), Hyptis pectinata (HP) and Hyptis marrubioides (HM) are plants used in folk medicine for treatment of several diseases. Here, we tested the in vivo antioxidant and neuroprotective potential of methanolic extracts from these plants, containing several rosmarinic acid derivatives and isoquercetin. In C. elegans, HS, HP and HM leaf extracts enhanced the antioxidant responses through the induction of specific antioxidant enzymes and demonstrated neurotherapeutic potential in transgenic models of genetically determined human neurodegenerative diseases - frontotemporal dementia with parkinsonism linked to chromosome 17 and Machado-Joseph disease. Chronic treatment of disease models with HS, HP and HM leaf extracts improved the animals' motor function and increased their tolerance to an oxidative insult. The restorative effect of HM extract in motor performance of both disease models required the presence of glutathione reductase (
gsr-1), an enzyme that assures the glutathione redox cycle, highlighting the role of this pathway and unveiling a common candidate therapeutic target for these diseases. Our findings strengthen the relevance of plant-derived bioactive compound discovery for neurodegenerative disorders that remain without effective treatment.
-
[
Biochem Biophys Res Commun,
2009]
Ataxin-3 is the protein involved in Machado-Joseph disease, a neurodegenerative disorder caused by a polyglutamine expansion. Ataxin-3 binds ubiquitylated proteins and acts as a deubiquitylating enzyme in vitro. It was previously proposed that ataxin-3, along with the VCP/p97 protein, escorts ubiquitylated substrates for proteasomal degradation, although other players of this escort complex were not identified yet. In this work, we show that the Caenorhabditis elegans ataxin-3 protein (ATX-3) interacts with both VCP/p97 worm homologs, CDC-48.1 and CDC-48.2 and we map the interaction domains. We describe a motility defect in both ATX-3 and CDC-48.1 mutants and, in addition, we identify a new protein interactor, UBXN-5, potentially an adaptor of the CDC-48-ATX-3 escort complex. CDC-48 binds to both ATX-3 and UBXN-5 in a non-competitive manner, suggesting the formation of a trimolecular complex. Both CDC-48 and ATX-3, but not UBXN-5, were able to bind K-48 polyubiquitin chains, the standard signal for proteasomal degradation. Additionally, we describe several common interactors of ATX-3 and UBXN-5, some of which can be in vivo targets of this complex.
-
[
Biomed Pharmacother,
2023]
The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.