Predicted to be involved in Golgi organization. Located in endoplasmic reticulum. Human ortholog(s) of this gene implicated in Smith-McCort dysplasia 1. Is an ortholog of human DYM (dymeclin).
Predicted to enable GTP binding activity and GTPase activity. Predicted to be involved in autophagosome assembly. Predicted to be located in Golgi apparatus and endosome. Human ortholog(s) of this gene implicated in Smith-McCort dysplasia 2. Is an ortholog of human RAB33B (RAB33B, member RAS oncogene family).
Predicted to enable RNA binding activity and ribosome binding activity. Predicted to contribute to translation initiation factor activity. Involved in positive regulation of apoptotic process. Located in cytoplasm. Expressed in several structures, including embryonic cell and germ line. Is an ortholog of human EIF3K (eukaryotic translation initiation factor 3 subunit K).
Predicted to enable calcium ion binding activity. Predicted to be involved in cell adhesion. Predicted to be located in plasma membrane. Expressed in K cell; K' cell; mc1; mc2; and seam cell.
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).