- NCA2 [Search on AGR]
Saccharomyces cerevisiae Protein that regulates expression of Fo-F1 ATP synthase subunits; involved in the regulation of mitochondrial expression of subunits 6 (Atp6p) and 8 (Atp8p) of the Fo-F1 ATP synthase; functions with Nca3p
- Atp5pf [Search on AGR]
Homo sapiens Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo complex has nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the F6 subunit of the Fo complex. The F6 subunit is required for F1 and Fo interactions. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. This gene has 1 or more pseudogenes. [provided by RefSeq, Feb 2016]
- Atp5me [Search on AGR]
Homo sapiens Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the e subunit of the Fo complex. Alternative splicing results in multiple transcript variants.[provided by RefSeq, Jun 2010]
- Atp5mg [Search on AGR]
Homo sapiens Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the g subunit of the Fo complex. Alternative splicing results in multiple transcript variants.[provided by RefSeq, Jun 2010]
- Atp5pd [Search on AGR]
Homo sapiens Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The F1 complex consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled in a ratio of 3 alpha, 3 beta, and a single representative of the other 3. The Fo seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the d subunit of the Fo complex. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. In addition, three pseudogenes are located on chromosomes 9, 12 and 15. [provided by RefSeq, Jun 2010]
- ATP5MF-PTCD1 [Search on AGR]
Homo sapiens This locus represents naturally occurring read-through transcription between the ATP5J2 (ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2) and PTCD1 (pentatricopeptide repeat domain 1) genes on chromosome 7. The read-through transcript encodes a fusion protein that shares sequence identity with each individual gene product. [provided by RefSeq, Nov 2010]
- NCA3 [Search on AGR]
Saccharomyces cerevisiae Protein involved in mitochondrion organization; functions with Nca2p to regulate mitochondrial expression of subunits 6 (Atp6p) and 8 (Atp8p) of the Fo-F1 ATP synthase; SWAT-GFP, seamless-GFP and mCherry fusion proteins localize to the vacuole; member of the SUN family; expression induced in cells treated with the mycotoxin patulin; NCA3 has a paralog, UTH1, that arose from the whole genome duplication
- Ptcd1 [Search on AGR]
Homo sapiens This gene encodes a mitochondrial protein that binds leucine tRNAs and other mitochondrial RNAs and plays a role in the regulation of translation. Increased expression of this gene results in decreased mitochondrial leucine tRNA levels. Naturally occurring read-through transcription exists between upstream ATP5J2 (ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F2) and this gene. [provided by RefSeq, Aug 2015]
- Atp5mf [Search on AGR]
Homo sapiens Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. It is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, which comprises the proton channel. The catalytic portion of mitochondrial ATP synthase consists of five different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and single representatives of the gamma, delta, and epsilon subunits. The proton channel likely has nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the f subunit of the Fo complex. Alternatively spliced transcript variants encoding different isoforms have been identified for this gene. This gene has multiple pseudogenes. Naturally occurring read-through transcription also exists between this gene and the downstream pentatricopeptide repeat domain 1 (PTCD1) gene. [provided by RefSeq, Nov 2010]