Histidinolphosphatase; catalyzes the eighth step in histidine biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts; transcription is regulated by general amino acid control
Enzyme that catalyzes the fourth step in the histidine pathway; Phosphoribosylformimino-5-aminoimidazole carboxamide ribotide isomerase; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts
Histidinol-phosphate aminotransferase; catalyzes the seventh step in histidine biosynthesis; responsive to general control of amino acid biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts
Imidazoleglycerol-phosphate dehydratase; catalyzes the sixth step in histidine biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts; transcription is regulated by general amino acid control via Gcn4p
ATP phosphoribosyltransferase; a hexameric enzyme, catalyzes the first step in histidine biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni salts; transcription is regulated by general amino acid control
Predicted to enable mRNA binding activity. Located in nucleus. Expressed widely. Is an ortholog of human HNRNPR (heterogeneous nuclear ribonucleoprotein R) and SYNCRIP (synaptotagmin binding cytoplasmic RNA interacting protein).
Is affected by clk-1 and sir-2.1 based on microarray studies. Is predicted to encode a protein with the following domains: 7TM GPCR, serpentine receptor class r (Str) and Serpentine type 7TM GPCR chemoreceptor Str.
NAD-dependent (R,R)-butanediol dehydrogenase; catalyzes oxidation of (R,R)-2,3-butanediol to (3R)-acetoin, oxidation of meso-butanediol to (3S)-acetoin, and reduction of acetoin; enhances use of 2,3-butanediol as an aerobic carbon source
The piggyBac family of proteins, found in diverse animals, are transposases related to the transposase of the canonical piggyBac transposon from the moth, Trichoplusia ni. This family also includes genes in several genomes, including human, that appear to have been derived from the piggyBac transposons. This gene belongs to the subfamily of piggyBac transposable element derived (PGBD) genes. The PGBD proteins appear to be novel, with no obvious relationship to other transposases, or other known protein families. [provided by RefSeq, May 2010]