Predicted to enable RNA binding activity and ribosome binding activity. Predicted to contribute to translation initiation factor activity. Involved in positive regulation of apoptotic process. Located in cytoplasm. Expressed in several structures, including embryonic cell and germ line. Is an ortholog of human EIF3K (eukaryotic translation initiation factor 3 subunit K).
PHENOTYPE: Mice hemizygous for a null allele of 4930567H17Rik and Gm14725 exhibit normal male fertility despite slightly longer than normal sperm hooks. [provided by MGI curators]
PHENOTYPE: Mice hemizygous for a null allele of 4930567H17Rik and Gm14725 exhibit normal male fertility despite slightly longer than normal sperm hooks. [provided by MGI curators]
Predicted to enable calcium ion binding activity. Predicted to be involved in cell adhesion. Predicted to be located in plasma membrane. Expressed in K cell; K' cell; mc1; mc2; and seam cell.
This gene encodes a protein containing two AT-hooks, which likely function in DNA binding. Mutations in this gene were found in individuals with Xia-Gibbs syndrome. [provided by RefSeq, Jun 2014]
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).
Predicted to enable outward rectifier potassium channel activity and potassium ion leak channel activity. Predicted to be involved in potassium ion transmembrane transport and stabilization of membrane potential. Predicted to be located in plasma membrane. Is an ortholog of several human genes including KCNK2 (potassium two pore domain channel subfamily K member 2); KCNK4 (potassium two pore domain channel subfamily K member 4); and KCNK5 (potassium two pore domain channel subfamily K member 5).