- WBPaper00035654:alpha-synuclein_regulated
TIGR Spotfinder software was used to filter unreliable spots based on Otsu's method algorithm and to convert good spots in microarray images to numerical form. Raw signal values were analyzed using mean centering to normalize signal values between channels. Signals from Alexa Fluor Dye Control probes were excluded from normalization process due their oversaturation leaving only probe intensities from C. elegans miRNAs to use in normalization. Signal intensity ratios were calculated for each signal pair yielding fold change values and p values for each miRNAs from the strain of investigation. A cutoff of 1.4 was used to detect modestly changing miRNAs.
Genes that differentially expressed in WBPaper00035654Is1[aex-3
- WBPaper00035654:cat-1(e1111)_regulated
TIGR Spotfinder software was used to filter unreliable spots based on Otsu's method algorithm and to convert good spots in microarray images to numerical form. Raw signal values were analyzed using mean centering to normalize signal values between channels. Signals from Alexa Fluor Dye Control probes were excluded from normalization process due their oversaturation leaving only probe intensities from C. elegans miRNAs to use in normalization. Signal intensity ratios were calculated for each signal pair yielding fold change values and p values for each miRNAs from the strain of investigation. A cutoff of 1.4 was used to detect modestly changing miRNAs.
Genes that differentially expressed in cat-1(e1111) comparing with N2 at L4 larva.
- WBPaper00035654:pdr-1(gk448)_regulated
TIGR Spotfinder software was used to filter unreliable spots based on Otsu's method algorithm and to convert good spots in microarray images to numerical form. Raw signal values were analyzed using mean centering to normalize signal values between channels. Signals from Alexa Fluor Dye Control probes were excluded from normalization process due their oversaturation leaving only probe intensities from C. elegans miRNAs to use in normalization. Signal intensity ratios were calculated for each signal pair yielding fold change values and p values for each miRNAs from the strain of investigation. A cutoff of 1.4 was used to detect modestly changing miRNAs.
Genes that differentially expressed in pdr-1(gk448) comparing with N2 at L4 larva.
- WBPaper00026952:class_A
Raw data from each experiment were downloaded from the Stanford Microarray Database into Excel files and processed as follows: (i) sort by Spot Flag and discard any rows where the Spot Flag value was nonzero, indicating a bad PCR; (ii) sort by Failed and discard any rows where the Failed value was nonzero, indicating abnormal hybridization; (iii) import into a common file for each type of experiment (i.e., lin-14 or lin-4) the columns from each raw experimental file [RAT2(R/G), which shows a log base 2 transformed ratio of normalized red/green signal for each spot; name of spot (Wormbase designation); chromosome location and description (www.wormbase.org)]; (iv) calculate an average RAT2(R/G) based on the 2 or 3 values (avg; any rows which had only one good experimental value were discarded); (v) calculate a standard deviation (stdev) for the average value; (vi) calculate a t value for each spot by using the formula t = avg*[sqrt(n - 1)]/stdev, where n is the number of experiments for which good data exist, sqrt is square root, and stdev is standard deviation; (vii) sort by absolute t value and discard any rows with a t value below 4.303 (below 95% confidence interval for three experiments) or below 12.706 (below 95% confidence interval for two experiments); (viii) sort by absolute average value and discard any rows with average values below 1.0 (less than twofold change compared to control).
Class A gene expression showed down regulation in lin-14(lf) in L1, no change in lin-4(lf) in L2.
- WBPaper00026952:class_E
Raw data from each experiment were downloaded from the Stanford Microarray Database into Excel files and processed as follows: (i) sort by Spot Flag and discard any rows where the Spot Flag value was nonzero, indicating a bad PCR; (ii) sort by Failed and discard any rows where the Failed value was nonzero, indicating abnormal hybridization; (iii) import into a common file for each type of experiment (i.e., lin-14 or lin-4) the columns from each raw experimental file [RAT2(R/G), which shows a log base 2 transformed ratio of normalized red/green signal for each spot; name of spot (Wormbase designation); chromosome location and description (www.wormbase.org)]; (iv) calculate an average RAT2(R/G) based on the 2 or 3 values (avg; any rows which had only one good experimental value were discarded); (v) calculate a standard deviation (stdev) for the average value; (vi) calculate a t value for each spot by using the formula t = avg*[sqrt(n - 1)]/stdev, where n is the number of experiments for which good data exist, sqrt is square root, and stdev is standard deviation; (vii) sort by absolute t value and discard any rows with a t value below 4.303 (below 95% confidence interval for three experiments) or below 12.706 (below 95% confidence interval for two experiments); (viii) sort by absolute average value and discard any rows with average values below 1.0 (less than twofold change compared to control).
Class E gene expression showed no change in lin-14(lf) in L1, up regulation in lin-4(lf) in L2.
- WBPaper00026952:class_F
Raw data from each experiment were downloaded from the Stanford Microarray Database into Excel files and processed as follows: (i) sort by Spot Flag and discard any rows where the Spot Flag value was nonzero, indicating a bad PCR; (ii) sort by Failed and discard any rows where the Failed value was nonzero, indicating abnormal hybridization; (iii) import into a common file for each type of experiment (i.e., lin-14 or lin-4) the columns from each raw experimental file [RAT2(R/G), which shows a log base 2 transformed ratio of normalized red/green signal for each spot; name of spot (Wormbase designation); chromosome location and description (www.wormbase.org)]; (iv) calculate an average RAT2(R/G) based on the 2 or 3 values (avg; any rows which had only one good experimental value were discarded); (v) calculate a standard deviation (stdev) for the average value; (vi) calculate a t value for each spot by using the formula t = avg*[sqrt(n - 1)]/stdev, where n is the number of experiments for which good data exist, sqrt is square root, and stdev is standard deviation; (vii) sort by absolute t value and discard any rows with a t value below 4.303 (below 95% confidence interval for three experiments) or below 12.706 (below 95% confidence interval for two experiments); (viii) sort by absolute average value and discard any rows with average values below 1.0 (less than twofold change compared to control).
Class F gene expression showed no change in lin-14(lf) in L1, down regulation in lin-4(lf) in L2.
- WBPaper00026952:class_G
Raw data from each experiment were downloaded from the Stanford Microarray Database into Excel files and processed as follows: (i) sort by Spot Flag and discard any rows where the Spot Flag value was nonzero, indicating a bad PCR; (ii) sort by Failed and discard any rows where the Failed value was nonzero, indicating abnormal hybridization; (iii) import into a common file for each type of experiment (i.e., lin-14 or lin-4) the columns from each raw experimental file [RAT2(R/G), which shows a log base 2 transformed ratio of normalized red/green signal for each spot; name of spot (Wormbase designation); chromosome location and description (www.wormbase.org)]; (iv) calculate an average RAT2(R/G) based on the 2 or 3 values (avg; any rows which had only one good experimental value were discarded); (v) calculate a standard deviation (stdev) for the average value; (vi) calculate a t value for each spot by using the formula t = avg*[sqrt(n - 1)]/stdev, where n is the number of experiments for which good data exist, sqrt is square root, and stdev is standard deviation; (vii) sort by absolute t value and discard any rows with a t value below 4.303 (below 95% confidence interval for three experiments) or below 12.706 (below 95% confidence interval for two experiments); (viii) sort by absolute average value and discard any rows with average values below 1.0 (less than twofold change compared to control).
Class G gene expression showed down regulation in lin-14(lf) in L1, down regulation in lin-4(lf) in L2.
- WBPaper00026952:class_H
Raw data from each experiment were downloaded from the Stanford Microarray Database into Excel files and processed as follows: (i) sort by Spot Flag and discard any rows where the Spot Flag value was nonzero, indicating a bad PCR; (ii) sort by Failed and discard any rows where the Failed value was nonzero, indicating abnormal hybridization; (iii) import into a common file for each type of experiment (i.e., lin-14 or lin-4) the columns from each raw experimental file [RAT2(R/G), which shows a log base 2 transformed ratio of normalized red/green signal for each spot; name of spot (Wormbase designation); chromosome location and description (www.wormbase.org)]; (iv) calculate an average RAT2(R/G) based on the 2 or 3 values (avg; any rows which had only one good experimental value were discarded); (v) calculate a standard deviation (stdev) for the average value; (vi) calculate a t value for each spot by using the formula t = avg*[sqrt(n - 1)]/stdev, where n is the number of experiments for which good data exist, sqrt is square root, and stdev is standard deviation; (vii) sort by absolute t value and discard any rows with a t value below 4.303 (below 95% confidence interval for three experiments) or below 12.706 (below 95% confidence interval for two experiments); (viii) sort by absolute average value and discard any rows with average values below 1.0 (less than twofold change compared to control).
Class H gene expression showed up regulation in lin-14(lf) in L1, up regulation in lin-4(lf) in L2.
- WBPaper00026952:class_D
Raw data from each experiment were downloaded from the Stanford Microarray Database into Excel files and processed as follows: (i) sort by Spot Flag and discard any rows where the Spot Flag value was nonzero, indicating a bad PCR; (ii) sort by Failed and discard any rows where the Failed value was nonzero, indicating abnormal hybridization; (iii) import into a common file for each type of experiment (i.e., lin-14 or lin-4) the columns from each raw experimental file [RAT2(R/G), which shows a log base 2 transformed ratio of normalized red/green signal for each spot; name of spot (Wormbase designation); chromosome location and description (www.wormbase.org)]; (iv) calculate an average RAT2(R/G) based on the 2 or 3 values (avg; any rows which had only one good experimental value were discarded); (v) calculate a standard deviation (stdev) for the average value; (vi) calculate a t value for each spot by using the formula t = avg*[sqrt(n - 1)]/stdev, where n is the number of experiments for which good data exist, sqrt is square root, and stdev is standard deviation; (vii) sort by absolute t value and discard any rows with a t value below 4.303 (below 95% confidence interval for three experiments) or below 12.706 (below 95% confidence interval for two experiments); (viii) sort by absolute average value and discard any rows with average values below 1.0 (less than twofold change compared to control).
Class D gene expression showed up regulation in lin-14(lf) in L1, down regulation in lin-4(lf) in L2.
- WBPaper00026952:class_B
Raw data from each experiment were downloaded from the Stanford Microarray Database into Excel files and processed as follows: (i) sort by Spot Flag and discard any rows where the Spot Flag value was nonzero, indicating a bad PCR; (ii) sort by Failed and discard any rows where the Failed value was nonzero, indicating abnormal hybridization; (iii) import into a common file for each type of experiment (i.e., lin-14 or lin-4) the columns from each raw experimental file [RAT2(R/G), which shows a log base 2 transformed ratio of normalized red/green signal for each spot; name of spot (Wormbase designation); chromosome location and description (www.wormbase.org)]; (iv) calculate an average RAT2(R/G) based on the 2 or 3 values (avg; any rows which had only one good experimental value were discarded); (v) calculate a standard deviation (stdev) for the average value; (vi) calculate a t value for each spot by using the formula t = avg*[sqrt(n - 1)]/stdev, where n is the number of experiments for which good data exist, sqrt is square root, and stdev is standard deviation; (vii) sort by absolute t value and discard any rows with a t value below 4.303 (below 95% confidence interval for three experiments) or below 12.706 (below 95% confidence interval for two experiments); (viii) sort by absolute average value and discard any rows with average values below 1.0 (less than twofold change compared to control).
Class B gene expression showed up regulation in lin-14(lf) in L1, no change in lin-4(lf) in L2.