Endogenous DVC1 was predominantly expressed during S and G2 phases of the cell cycle. Upon exit from mitosis, DVC1 expression was rapidly downregulated with kinetics similar to that of known APC-Cdh1 targets such as cyclin A, and reaccumulated as cells entered S phase.
To determine in which cell(s) tiar-2 functions, we constructed a GFP-TIAR-2 mini-gene translational reporter and observed broad expression in many cell types, including mechanosensory neurons.
HSP-4::GFP was exclusively localized in the PVD soma, colocalizing with a rough ER marker TRAM, HSP-4's endoplasmic reticulum localization pattern is consistent with the observation that its mammalian homolog BiP is localized in rough endoplasmic reticulum.
COQ-8 expression pattern changed in L4 larvae and young adult stages of very active and fertile young individuals. Hypodermis fluorescence decreased abruptly and GFP signal appeared restricted to muscles and nervous system. It worth noting that hypodermal COQ-8::GFP expression was readily observed during moulting period but decreases abruptly in young adults, that no further moults, allowing the detection of COQ-8::GFP fluorescence in smaller cells as coelomocytes, which were not readily visible in earlier larval stages. Coelomocytes are defensive phagocytes that produce reactive oxygen species (ROS) in worms and other invertebrates and a high Q content would be needed to prevent oxidative damage derived from this particular oxygen metabolism.
Time-lapse fluorescence microscopy was performed, including DIC for morphology. Gene expression patterns were summarized in 4 manners: Average over time, Average over time and at different positions along the anterior-posterior (AP) axis, a voxelized representation over time, and on individual cells overlaid from a reference coordinate dataset (https://doi.org/10.1016/j.ydbio.2009.06.014). The analysis was done with a pipeline based on the multi-purpose image analysis software Endrov (https://doi.org/10.1038/nmeth.2478), which further is needed to browse the raw recording data. Thumbnail movies were also generated, using maximum Z projection for the 3D fluorescence channel. Raw recordings available in the Endrov OST-file format are available at https://www.ebi.ac.uk/biostudies/studies/S-BIAD191?query=S-BIAD191
Time-lapse fluorescence microscopy was performed, including DIC for morphology. Gene expression patterns were summarized in 4 manners: Average over time, Average over time and at different positions along the anterior-posterior (AP) axis, a voxelized representation over time, and on individual cells overlaid from a reference coordinate dataset (https://doi.org/10.1016/j.ydbio.2009.06.014). The analysis was done with a pipeline based on the multi-purpose image analysis software Endrov (https://doi.org/10.1038/nmeth.2478), which further is needed to browse the raw recording data. Thumbnail movies were also generated, using maximum Z projection for the 3D fluorescence channel. Raw recordings available in the Endrov OST-file format are available at https://www.ebi.ac.uk/biostudies/studies/S-BIAD191?query=S-BIAD191